Reaction Components (reaction + component)

Distribution by Scientific Domains


Selected Abstracts


Effects of the Interaction Between Reaction Component of Personal Need for Structure and Role Perceptions on Employee Attitudes in Long-Term Care for Elderly People,

JOURNAL OF APPLIED SOCIAL PSYCHOLOGY, Issue 12 2008
Tarja Heponiemi
This study examined the interaction of reaction component of personal need for structure (reaction to lack of structure, RLS) and role perceptions in predicting job satisfaction, job involvement, affective commitment, and occupational identity among employees working in long-term care for elderly people. High-RLS employees experienced more role conflict, had less job satisfaction, and experienced lower levels of occupational identity than did low-RLS employees. We found individual differences in how problems in roles affected employees' job attitudes. High-RLS employees experienced lower levels of job satisfaction, job involvement, and affective commitment, irrespective of role-conflict levels. Low-RLS employees experienced detrimental job attitudes only if role-conflict levels were high. Our results suggest that high-RLS people benefit less from low levels of experienced role conflicts. [source]


A placebo controlled investigation into the effects of paroxetine and mirtazapine on measures related to car driving performance

HUMAN PSYCHOPHARMACOLOGY: CLINICAL AND EXPERIMENTAL, Issue 4 2003
F. Ridout
Abstract Objective To assess the effects of paroxetine and mirtazapine on psychometric performance related to car driving, including an on-the-road test of BRT. Method In a 4-way, double blind randomised crossover study, 12 healthy volunteers received paroxetine 20,mg mane, mirtazapine 15,mg/30,mg nocte (comparator), mirtazapine 15,mg mane/15,mg b.i.d.(verum) and placebo over a 5 day period with a washout period of 7 days between treatments. Psychometric assessments included ,on-the-road' BRT (BRT), CFF (CFF), CRT (CRT) and subjective measures of sedation and sleep parameters. Results Paroxetine had no significant effect on BRT compared with placebo. Although subjective ratings of sleep quality and sedation were impaired, there were significant improvements in both CFF and the recognition reaction component of CRT with paroxetine. Mirtazapine 15,mg/30,mg nocte impaired laboratory performance and some subjective tests. Mirtazapine 15 mg mane/15,mg b.i.d. improved sleep, but significantly impaired all other measures. Conclusion Paroxetine 20,mg/day has no psychomotor or behavioural toxicity and has no negative impact on BRT. Further research into the chronic and sub-chronic effects of mirtazapine is needed to establish the clinical significance of these results. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Effects of the Interaction Between Reaction Component of Personal Need for Structure and Role Perceptions on Employee Attitudes in Long-Term Care for Elderly People,

JOURNAL OF APPLIED SOCIAL PSYCHOLOGY, Issue 12 2008
Tarja Heponiemi
This study examined the interaction of reaction component of personal need for structure (reaction to lack of structure, RLS) and role perceptions in predicting job satisfaction, job involvement, affective commitment, and occupational identity among employees working in long-term care for elderly people. High-RLS employees experienced more role conflict, had less job satisfaction, and experienced lower levels of occupational identity than did low-RLS employees. We found individual differences in how problems in roles affected employees' job attitudes. High-RLS employees experienced lower levels of job satisfaction, job involvement, and affective commitment, irrespective of role-conflict levels. Low-RLS employees experienced detrimental job attitudes only if role-conflict levels were high. Our results suggest that high-RLS people benefit less from low levels of experienced role conflicts. [source]


Electrochemically Induced Modulation of the Catalytic Activity of a Reversible Redoxsensitive Riboswitch

ELECTROANALYSIS, Issue 9 2008
Denise Strohbach
Abstract Over the past decade, RNA conformation has been shown to respond to external stimuli. Thus, dependent on the presence of a high affinity ligand, specifically designed ribozymes can be regulated in a classical allosteric way. In this scenario, a binding event in one part of the RNA structure induces conformational changes in a separated part, which constitutes the catalytic centre. As a result activity is switched on (positive regulation) or off (negative regulation). We have developed a hairpin aptazyme responding to flavine mononucleotide (FMN). Ribozyme activity is dependent on binding of FMN and thus is switched on in the presence of FMN in its oxidized form. Under reducing conditions, however, FMN changes its molecular geometry, which is associated with loss of binding and consequently down-regulation of ribozyme activity. While in previous experiments sodium dithionite was used for reduction of FMN, we now present an assay for electrochemically induced activity switching. We have developed an electrochemical microcell that allows for iterative cycles of reduction/oxidation of FMN in an oxygen free atmosphere and thus for reversible switching of ribozyme activity. The reaction proceeds in droplets of 3 to 10,,L at micro- to nanomolar concentrations of the reaction components. [source]


A Facile Strategy for Preparing Self-Healing Polymer Composites by Incorporation of Cationic Catalyst-Loaded Vegetable Fibers

ADVANCED FUNCTIONAL MATERIALS, Issue 14 2009
Ding Shu Xiao
Abstract A two-component healing agent, consisting of epoxy-loaded microcapsules and an extremely active catalyst (boron trifluoride diethyl etherate, (C2H5)2O,·,BF3)), is incorporated into epoxy composites to provide the latter with rapid self-healing capability. To avoid deactivation of the catalyst during composite manufacturing, (C2H5)2O,·,BF3 is firstly absorbed by fibrous carriers (i.e., short sisal fibers), and then the fibers are coated with polystyrene and embedded in the epoxy matrix together with the encapsulated epoxy monomer. Because of gradual diffusion of the absorbed (C2H5)2O,·,BF3 from the sisal into the surrounding matrix, the catalyst is eventually distributed throughout the composites and acts as a latent hardener. Upon cracking of the composites, the epoxy monomer is released from the broken capsules, spreading over the cracked planes. As a result, polymerization, triggered by the dispersed (C2H5)2O,·,BF3, takes place and the damaged sites are rebonded. Since the epoxy,BF3 cure belongs to a cationic chain polymerization, the exact stoichiometric ratio of the reaction components required by other healing chemistries is no longer necessary. Only a small amount of (C2H5)2O,·,BF3 is sufficient to initiate very fast healing (e.g., a 76% recovery of impact strength is observed within 30,min at 20,°C). [source]


Block copolymers by chemoenzymatic cascade polymerization: A comparison of consecutive and simultaneous reactions

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 14 2006
Matthijs de Geus
Abstract The synthetic parameters for the chemoenzymatic cascade synthesis of block copolymers combining enzymatic ring-opening polymerization (EROP) and atom transfer radical polymerization (ATRP) in one pot were investigated. A detailed analysis of the mutual interactions between the single reaction components revealed that the ATRP catalyst system could have a significant inhibiting effect on the enzyme activity. The inhibition of the enzyme was less pronounced in the presence of multivalent ligands such as dinonyl bipyridine, which thus could be used in this reaction as an ATRP catalyst. Moreover, the choice of the ATRP monomer was investigated. Methyl methacrylate interfered with EROP by transesterification, whereas t -butyl methacrylate was inert. Block copolymers were successfully synthesized with this cascade approach by the activation of ATRP after EROP by the addition of the ATRP catalyst and, with lower block copolymer yields, by the mixing of all the components before the copolymerization. Adetailed kinetic analysis of the reactions and the structure of the block copolymers showed that the first procedure proceeded smoothly to high block copolymer yields, whereas in the latter a noteworthy amount of the poly(t -butyl methacrylate) homopolymer was detected. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4290,4297, 2006 [source]


Preparation and characterization of biodegradable waterabsorbent PAN/SS nanocomposite

POLYMER COMPOSITES, Issue 11 2008
Bijayashree Samal
Polyacrylonitrile (PAN)/sodium silicate (SS) nanocomposite was prepared via nonconventional emulsion method using an in situ developed transition metal complex Cu(II)/glycine taking ammonium persulfate (APS) as initiator, with a novel motive of converting hydrophobic homopolymer PAN into hydrophilic nano material via nanotechnology by the inclusion of SS to the homopolymer. UV,visible spectral analysis was carried out which revealed various interactions between the in situ developed complex with other reaction components. The formation of the PAN/SS nanocomposite was confirmed by infrared spectra (IR). Furthermore, as evidenced by transmission electron microscopy (TEM), the composite so obtained was found to have nano scale structure. X-ray diffraction (XRD) was carried out suggesting that the silicate layers were exfoliated during the polymerization process. An increase in the thermal stability for the developed nanocomposite was recorded by thermogravimetric analysis (TGA). Surprisingly, it was also found that the PAN/SS nanocomposite showed considerable amount of waterabsorbency and was biodegradable as tested by activated sludge and cultured media and further confirmed by scanning electron microscopy (SEM). POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers [source]


Spatial and temporal evolution of the photo initiation rate for thick polymer systems illuminated on both sides

POLYMER INTERNATIONAL, Issue 10 2005
Nicole Stephenson
Abstract Photopolymerizations of thick systems are inherently non-uniform and much more complex than polymerizations of films and coatings. This contribution presents a mathematical description of the evolution of the photoinitiation rate profile for a thick photopolymerization system illuminated on two sides. Simulation results revealed that when two lamps of equal intensity are used, the spatial and temporal evolution of the photoinitiation rate profile follows a characteristic progression from a bimodal distribution to a unimodal shape with a maximum in the center of the sample. The addition of a second light source can lead to an initiation profile that is more uniform throughout the sample. System variables such as the initiator concentration, molar absorptivity and monomer absorptivity determine how the photoinitiation rate profile evolves. For example, increasing initiator concentration results in sharper initiation fronts which move through the sample more slowly. A reflective boundary condition, a special case of two-sided illumination using only one lamp, was found to enhance the initiation rate and uniformity for some reaction systems. This model provides the fundamental understanding needed to ensure proper selection of reaction components for effective photoinitiation in thick systems, including the possibility of a second light source as an additional design variable. Copyright © 2005 Society of Chemical Industry [source]


Simultaneous expression and maturation of the iron-sulfur protein ferredoxin in a cell-free system

BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2006
Marcus E. Boyer
Abstract The model iron-sulfur (Fe-S) protein ferredoxin (Fd) from Synechocystis sp. PCC 6803 has been simultaneously produced and matured in a cell-free production system. After 6 h of incubation at 37°C, Fd accumulated to >450 µg/mL. Essentially all was soluble, and 85% was active. Production and maturation of the protein in the cell-free system were found to be dependent in a coupled manner on the concentration of the supplemented iron and sulfur sources, ferrous ammonium sulfate and cysteine, respectively. The recombinant expression of ISC helper proteins during cell extract preparation did not increase cell-free Fd accumulation or activity, although the efficiency of iron and cysteine utilization increased. Fd maturation was independent of protein production rate, and proceeded at a constant rate throughout the period of active translation. In addition, incubation of denatured apo Fd with cell-free reaction components resulted in recovery of Fd activity, supporting the interpretation that maturation mechanisms did not act co-translationally. Incubation at 28°C increased total and active protein accumulation, but decreased the ratio of active to total Fd produced. In summary, the high product yields and folding efficiency make the cell-free system described here an attractive platform for the study of Fe-S protein production and maturation. The system enables both small-volume, high throughput investigations as well as larger scale production. To our knowledge, this is the first demonstration of directed, high-yield production and maturation of an Fe-S protein in a cell-free system. © 2006 Wiley Periodicals, Inc. [source]


Cell-Free Protein Synthesis System Prepared from Insect Cells by Freeze-Thawing

BIOTECHNOLOGY PROGRESS, Issue 6 2006
Toru Ezure
We established a novel cell-free protein synthesis system derived from Trichoplusia ni (HighFive) insect cells by a simple extraction method. Luciferase and ,-galactosidase were synthesized in this system with active forms. We analyzed and optimized (1) the preparation method of the insect cell extract, (2) the concentration of the reaction components, and (3) the 5,-untranslated region (5,-UTR) of mRNA. The extract was prepared by freeze-thawing insect cells suspended in the extraction buffer. This preparation method was a simple and superior method compared with the conventional method using a Dounce homogenizer. Furthermore, protein synthesis efficiency was improved by the addition of 20% (v/v) glycerol to the extraction buffer. Concentrations of the reaction components were optimized to increase protein synthesis efficiency. Moreover, mRNAs containing 5,-UTRs derived from baculovirus polyhedrin genes showed high protein synthesis activity. Especially, the leader composition of the Ectropis obliqua nucleopolyhedrovirus polyhedrin gene showed the highest enhancement activity among the six 5,-UTRs tested. As a result, in a batch reaction approximately 71 ,g of luciferase was synthesized per milliliter of reaction volume at 25 °C for 6 h. Moreover, this method for the establishment of a cell-free system was applied also to Spodoptera frugiperda 21 (Sf21) insect cells. After optimizing the concentrations of the reaction components and the 5,-UTR of mRNA, approximately 45 ,g/mL of luciferase was synthesized in an Sf21 cell-free system at 25 °C for 3 h. These productivities were sufficient to perform gene expression analyses. Thus, these cell-free systems may be a useful tool for simple synthesis in post-genomic studies as a novel protein production method. [source]