Home About us Contact | |||
Reward Prediction Error (reward + prediction_error)
Selected AbstractsSeparate brain regions code for salience vs. valence during reward prediction in humansHUMAN BRAIN MAPPING, Issue 4 2007Jimmy Jensen Abstract Predicting rewards and avoiding aversive conditions is essential for survival. Recent studies using computational models of reward prediction implicate the ventral striatum in appetitive rewards. Whether the same system mediates an organism's response to aversive conditions is unclear. We examined the question using fMRI blood oxygen level-dependent measurements while healthy volunteers were conditioned using appetitive and aversive stimuli. The temporal difference learning algorithm was used to estimate reward prediction error. Activations in the ventral striatum were robustly correlated with prediction error, regardless of the valence of the stimuli, suggesting that the ventral striatum processes salience prediction error. In contrast, the orbitofrontal cortex and anterior insula coded for the differential valence of appetitive/aversive stimuli. Given its location at the interface of limbic and motor regions, the ventral striatum may be critical in learning about motivationally salient stimuli, regardless of valence, and using that information to bias selection of actions. Inc. Hum Brain Mapp, 2007. © 2006 Wiley-Liss, Inc. [source] When What You See Isn't What You Get: Alcohol Cues, Alcohol Administration, Prediction Error, and Human Striatal DopamineALCOHOLISM, Issue 1 2009Karmen K. Yoder Background:, The mesolimbic dopamine (DA) system is implicated in the development and maintenance of alcohol drinking; however, the exact mechanisms by which DA regulates human alcohol consumption are unclear. This study assessed the distinct effects of alcohol-related cues and alcohol administration on striatal DA release in healthy humans. Methods:, Subjects underwent 3 PET scans with [11C]raclopride (RAC). Subjects were informed that they would receive either an IV Ringer's lactate infusion or an alcohol (EtOH) infusion during scanning, with naturalistic visual and olfactory cues indicating which infusion would occur. Scans were acquired in the following sequence: (1) Baseline Scan: Neutral cues predicting a Ringer's lactate infusion, (2) CUES Scan: Alcohol-related cues predicting alcohol infusion in a Ringer's lactate solution, but with alcohol infusion after scanning to isolate the effects of cues, and (3) EtOH Scan: Neutral cues predicting Ringer's, but with alcohol infusion during scanning (to isolate the effects of alcohol without confounding expectation or craving). Results:, Relative to baseline, striatal DA concentration decreased during CUES, but increased during EtOH. Conclusion:, While the results appear inconsistent with some animal experiments showing dopaminergic responses to alcohol's conditioned cues, they can be understood in the context of the hypothesized role of the striatum in reward prediction error, and of animal studies showing that midbrain dopamine neurons decrease and increase firing rates during negative and positive prediction errors, respectively. We believe that our data are the first in humans to demonstrate such changes in striatal DA during reward prediction error. [source] Tonically active neurons in the striatum differentiate between delivery and omission of expected reward in a probabilistic task contextEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2009Paul Apicella Abstract Tonically active neurons (TANs) in the primate striatum are responsive to rewarding stimuli and they are thought to be involved in the storage of stimulus,reward associations or habits. However, it is unclear whether these neurons may signal the difference between the prediction of reward and its actual outcome as a possible neuronal correlate of reward prediction errors at the striatal level. To address this question, we studied the activity of TANs from three monkeys trained in a classical conditioning task in which a liquid reward was preceded by a visual stimulus and reward probability was systematically varied between blocks of trials. The monkeys' ability to discriminate the conditions according to probability was assessed by monitoring their mouth movements during the stimulus,reward interval. We found that the typical TAN pause responses to the delivery of reward were markedly enhanced as the probability of reward decreased, whereas responses to the predictive stimulus were somewhat stronger for high reward probability. In addition, TAN responses to the omission of reward consisted of either decreases or increases in activity that became stronger with increasing reward probability. It therefore appears that one group of neurons differentially responded to reward delivery and reward omission with changes in activity into opposite directions, while another group responded in the same direction. These data indicate that only a subset of TANs could detect the extent to which reward occurs differently than predicted, thus contributing to the encoding of positive and negative reward prediction errors that is relevant to reinforcement learning. [source] |