Repeat Structures (repeat + structure)

Distribution by Scientific Domains


Selected Abstracts


Re-sequencing regions of the ovine Y chromosome in domestic and wild sheep reveals novel paternal haplotypes

ANIMAL GENETICS, Issue 1 2009
J. R. S. Meadows
Summary The male-specific region of the ovine Y chromosome (MSY) remains poorly characterized, yet sequence variants from this region have the potential to reveal the wild progenitor of domestic sheep or examples of domestic and wild paternal introgression. The 5, promoter region of the sex-determining gene SRY was re-sequenced using a subset of wild sheep including bighorn (Ovis canadensis), thinhorn (Ovis dalli spp.), urial (Ovis vignei), argali (Ovis ammon), mouflon (Ovis musimon) and domestic sheep (Ovis aries). Seven novel SNPs (oY2,oY8) were revealed; these were polymorphic between but not within species. Re-sequencing and fragment analysis was applied to the MSY microsatellite SRYM18. It contains a complex compound repeat structure and sequencing of three novel size fragments revealed that a pentanucleotide element remained fixed, whilst a dinucleotide element displayed variability within species. Comparison of the sequence between species revealed that urial and argali sheep grouped more closely to the mouflon and domestic breeds than the pachyceriforms (bighorn and thinhorn). SNP and microsatellite data were combined to define six previously undetected haplotypes. Analysis revealed the mouflon as the only species to share a haplotype with domestic sheep, consistent with its status as a feral domesticate that has undergone male-mediated exchange with domestic animals. A comparison of the remaining wild species and domestic sheep revealed that O. aries is free from signatures of wild sheep introgression. [source]


Genetic Diversity of the Fragile X Syndrome Gene (FMR1) in a Large Sub-Saharan West African Population

ANNALS OF HUMAN GENETICS, Issue 4 2010
Emmanuel K. Peprah
Summary Fragile X syndrome (OMIM #300624) is caused by the expansion of a CGG trinucleotide repeat found in the 5, untranslated region of the X-linked FMR1 gene. Although examinations of characteristics associated with repeat instability and expansion of the CGG repeat upon transmission from parent to offspring has occurred in various world populations, none has been conducted in large Sub-Saharan African populations. We have examined the FMR1 CGG repeat structure in a sample of 350 males drawn from the general population of Ghana. We found that Ghanaians and African Americans have similar allele frequency distributions of CGG repeat and its flanking STR markers, DXS548 and FRAXAC1. However, the distribution of the more complex marker, FRAXAC2, is significantly different. The haplotype structure of the FMR1 locus indicated that Ghanaians share several haplotypes with African Americans and Caucasians that are associated with the expanded full mutation. In Ghanaians, the majority of repeat structures contained two AGG interruptions, however, the majority of intermediate alleles (35,49) lacked AGG interruptions. Overall, we demonstrate that allelic diversity of the FMR1 locus among Ghanaians is comparable to African Americans, but includes a minority of CGG array structures not found in other populations. [source]


A proposal for standardization in forensic equine DNA typing: allele nomenclature for 17 equine-specific STR loci

ANIMAL GENETICS, Issue 2 2010
L. H. P. Van De Goor
Summary In this study, a proposal is presented for the allele nomenclature of 17 polymorphic STR loci (AHT4, AHT5, ASB2, ASB17, ASB23, CA425, HMS1, HMS2, HMS3, HMS6, HMS7, HTG4, HTG6, HTG7, HTG10, LEX3 and VHL20) for equine genotyping (Equus caballus). The nomenclature is based on sequence data of the polymorphic region of the STR loci as recommended by the DNA commission of the International Society for Forensic Genetics for human DNA typing. For each STR locus, several alleles were selected and animals homozygous for those alleles were subjected to sequence analysis. The alleles of the 17 STR loci consisted either of simple (10), compound (6) or complex repeat patterns (1). Only a limited number of alleles with the same fragment size showed different repeat structures. The allele designation described here was based on the number of repeats, including all variable regions within the amplified fragment. [source]


A proposal for standardization in forensic bovine DNA typing: allele nomenclature of 16 cattle-specific short tandem repeat loci

ANIMAL GENETICS, Issue 5 2009
L. H. P. Van De Goor
Summary In this study, a proposal is presented for the allele nomenclature of 16 polymorphic short tandem repeat (STR) loci (BM1824, BM2113, ETH10, ETH225, INRA023, SPS115, TGLA122, TGLA126, TGLA227, ETH3, TGLA53, BM1818, CSRM60, CSSM66, HAUT27 and ILSTS006) for bovine genotyping (Bos taurus). The nomenclature is based on sequence data of the polymorphic region(s) of the STR loci as recommended by the DNA commission of the International Society of Forensic Genetics for human DNA typing. To cover commonly and rarely occurring alleles, a selection of animals homozygous for the alleles at these STR loci were analysed and subjected to sequence studies. The alleles of the STR loci consisted either of simple or compound dinucleotide repeat patterns. Only a limited number of alleles with the same fragment size showed different repeat structures. The allele designation described here was based on the number of repeats including all variable regions within the amplified fragment. The set of 16 STR markers should be propagated for the use in all bovine applications including forensic analysis. [source]


Genetic Diversity of the Fragile X Syndrome Gene (FMR1) in a Large Sub-Saharan West African Population

ANNALS OF HUMAN GENETICS, Issue 4 2010
Emmanuel K. Peprah
Summary Fragile X syndrome (OMIM #300624) is caused by the expansion of a CGG trinucleotide repeat found in the 5, untranslated region of the X-linked FMR1 gene. Although examinations of characteristics associated with repeat instability and expansion of the CGG repeat upon transmission from parent to offspring has occurred in various world populations, none has been conducted in large Sub-Saharan African populations. We have examined the FMR1 CGG repeat structure in a sample of 350 males drawn from the general population of Ghana. We found that Ghanaians and African Americans have similar allele frequency distributions of CGG repeat and its flanking STR markers, DXS548 and FRAXAC1. However, the distribution of the more complex marker, FRAXAC2, is significantly different. The haplotype structure of the FMR1 locus indicated that Ghanaians share several haplotypes with African Americans and Caucasians that are associated with the expanded full mutation. In Ghanaians, the majority of repeat structures contained two AGG interruptions, however, the majority of intermediate alleles (35,49) lacked AGG interruptions. Overall, we demonstrate that allelic diversity of the FMR1 locus among Ghanaians is comparable to African Americans, but includes a minority of CGG array structures not found in other populations. [source]