Reinforcing Material (reinforcing + material)

Distribution by Scientific Domains


Selected Abstracts


A homogenization method for estimating the bearing capacity of soils reinforced by columns

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 10 2005
B. Jellali
Abstract The ultimate bearing capacity problem of a strip foundation resting on a soil reinforced by a group of regularly spaced columns is investigated in the situation when both the native soil and reinforcing material are purely cohesive. Making use of the yield design homogenization approach, it is shown that such a problem may be dealt with as a plane strain yield design problem, provided that the reinforced soil macroscopic strength condition has been previously determined. Lower and upper bound estimates for such a macroscopic criterion are obtained, thus giving evidence of the reinforced soil strong anisotropy. Performing the upper bound kinematic approach on the homogenized bearing capacity problem, by using the classical Prandtl's failure mechanism, makes it then possible to derive analytical upper bound estimates for the reinforced foundation bearing capacity, as a function of the reinforced soil parameters (volume fraction and cohesion ratio), as well as of the relative extension of the reinforced area. It is shown in particular that such an estimate is closer to the exact value of the ultimate bearing capacity, than that derived from a direct analysis which implicitly assumes that the reinforced soil is an isotropic material. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites

POLYMER COMPOSITES, Issue 7 2008
R.B. Mathur
The use of multi-walled carbon nanotubes (MWCNT) as reinforcing material for thermoplastic polymer matrices, polymethyl methacrylate (PMMA), and polystyrene (PS) has been studied. MWCNT were synthesized by chemical vapor deposition (CVD) technique using ferrocene-toluene mixture. As-prepared nanotubes were ultrasonically dispersed in toluene and subsequently dispersed in PMMA and PS. Thin polymer composite films were fabricated by solvent casting. The effect of nanotube content on the electrical and mechanical properties of the nanocomposites was investigated. An improvement in electrical conductivity from insulating to conducting with increasing MWCNT content was observed. The carbon nanotube network showed a classical percolating network behavior with a low percolation threshold. Electromagnetic interference (EMI) shielding effectiveness value of about 18 dB was obtained in the frequency range 8.0,12 GHz (X-band), for a 10 vol% CNT loading. An improved composite fabrication process using casting followed by compression molding and use of functionalized MWCNT resulted in increased composites strength. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers [source]


Effect of rotational speed of twin screw extruder on the microstructure and rheological and mechanical properties of nanoclay-reinforced polypropylene nanocomposites

POLYMER ENGINEERING & SCIENCE, Issue 8 2006
Piia Peltola
The morphology and rheological and mechanical properties of nanoclay-reinforced polypropylene nanocomposites were investigated with aid of transmission electron microscopy (TEM), thermo gravimetric analysis, rheometry, and mechanical tests. The organically modified silicate (montmorillonite) was used as a reinforcing material and maleic anhydride-grafted polypropylene oligomer as a compatibilizer to improve the clay dispersion and adhesion. The object of the study was to examine the effect of screw speed of the co-rotating twin-screw extruder on the clay exfoliation and nanocomposite properties. Also, the effect of compatibilizing agent was taken into account. The main result of the study was that nanocomposites showed both intercalated and exfoliated structures depending on the screw speeds of extruder. TEM images revealed that the dispersion of silicate layers was greatly influenced by the screw speed. However, even when the silicate layers were highly exfoliated, there was no remarkable effect on mechanical properties of the nanocomposite. POLYM. ENG. SCI. 46:995,1000, 2006. © 2006 Society of Plastics Engineers. [source]


Recycling of poly(ethylene terephthalate) as polymer-polymer composites,

POLYMER ENGINEERING & SCIENCE, Issue 4 2002
M. Evstatiev
Microfibrillar reinforced composites (MFC) comprising an isotropic matrix from a lower melting polymer reinforced by microfibrils of a higher melting polymer were manufactured under industrially relevant conditions and processed via injection molding. Low density polyethylene (LDPE) (matrix) and recycled poly(ethylene terephthalate) (PET) (reinforcing material) from bottles were melt blended (in 30/70 and 50/50 PET/LDPE wt ratio) and extruded, followed by continuous drawing, pelletizing and injection molding of dogbone samples. Samples of each stage of MFC manufacturing and processing were characterized by means of scanning electron microscopy (SEM), wide-angle X-ray scattering (WAXS), dynamic mechanical thermal analysis (DMTA), and mechanical testing. SEM and WAXS showed that the extruded blend is isotropic but becomes highly oriented after drawing, being converted into a polymer-polymer composite upon injection molding at temperatures below the melting temperature of PET. This MFC is characterized by an isotropic LDPE matrix reinforced by randomly distributed PET microfibrils, as concluded from the WAXS patterns and SEM observations. The MFC dogbone samples show impressive mechanical properties,the elastic modulus is about 10 times higher than that of LDPE and about three times higher than reinforced LDPE with glass spheres, approaching the modulus of LDPE reinforced with 30 wt% short-glass fibers (GF). The tensile strength is at least two times higher than that of LDPE or of reinforced LDPE with glass spheres, approaching that of reinforced LDPE with 30 wt% GF. The impact strength of LDPE increases by 50% after reinforcement with PET. It is concluded that: (i) the MFC approach can be applied in industrially relevant conditions using various blend partners, and (ii) the MFC concept represents an attractive alternative for recycling of PET as well as other polymers. [source]


Comparison of analytical and numerical methods for homogenization of nanotube-reinforced polymers

PROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2009
Ina Schmidt
Carbon nanotubes are increasingly getting impact as reinforcing material for polymer based nanocomposites. Hence, new modeling strategies are necessary to calculate the behavior of these materials. In the last years some attempts have been made using and developing classical micromechanical models. On the other hand numerical homogenization methods are available to tackle this problem. Examples for both types of modeling strategies are presented with focus on the nanotube geometry. The nanotubes are modeled as hollow tubes as well as as isotropic and transversely isotropic cylinders. As expected the results of numerical and analytical methods are identical for isotropic cylinder inclusions. Small deviations occur for transversely isotropic cylinders in transverse direction. In the case of hollow tube inclusions, the analytical models lead to lower stiffness values in transverse direction and for shear. The largest deviations occur for longitudinal shear with magnitudes smaller than 10%. In contrast the effort to get numerical results is enormous, so that the analytical models are still useful. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Auswirkungen der Matrixzusammensetzung auf die Dauerhaftigkeit von Betonen mit textilen Bewehrungen aus AR-Glas

BETON- UND STAHLBETONBAU, Issue 8 2009
Marko Butler Dipl.-Ing.
Baustoffe; Bewehrung; Versuche Abstract Verbundmaterialien aus Feinbetonen mit textiler Bewehrung aus alkaliresistentem Glas (AR-Glas) können ausgeprägten zeitabhängigen Veränderungen hinsichtlich des mechanischen Leistungsvermögens unterliegen. Für eine zielsichere Anwendung solcher Werkstoffe im Bauwesen sind genaue Kenntnisse über die Höhe und die Ursachen dieser Leistungsverluste unabdingbar. In diesem Artikel werden anhand von Ergebnissen aktueller Untersuchungen entscheidende Mechanismen für die Alterungsprozesse dargestellt, die aus der Zusammensetzung der Feinbetone resultieren. Dazu wurden aus verschiedenen Betonzusammensetzungen, die sich maßgeblich in ihrer Hydratationskinetik und Alkalität unterschieden, textilbewehrte Dehnkörper hergestellt und nach beschleunigter Alterung geprüft. Dehnkörper aus Feinbeton mit hoher Alkalität (das Bindemittel bestand nur aus CEM I) zeigten dramatische Einbußen bei Zugfestigkeit und Bruchdehnung. Das Leistungsvermögen von Proben aus Feinbetonen mit puzzolanisch abgepufferter Bindemittelzusammensetzung und gleichzeitig reduziertem Portlandzementklinkeranteil zeigte sich dagegen weitgehend unbeeinflusst von Alterungsprozessen. Mit Hilfe von beidseitigen Garnauszugversuchen an beschleunigt gealterten Feinbetonproben wurden die für das unterschiedliche Materialverhalten verantwortlichen Degradationsmechanismen aufgeklärt. Neben der mechanischen Prüfung wurde dazu auch die Interphase zwischen Fasern und umgebendem Feinbeton mit bildgebenden und analytischen Verfahren charakterisiert. Die festgestellten Einbußen im Leistungsvermögen des Garn-Matrix-Verbundes konnten überwiegend auf die Neubildung von ungünstig strukturierten Hydratationsprodukten in der Interphase Filament-Matrix bzw. in Filamentzwischenräumen zurückgeführt werden. Die Morphologie dieser Phase wird maßgeblich von der Bindemittelzusammensetzung bestimmt. Korrosion des AR-Glases als Schadensursache kann unter ungünstigen Umständen auch eine große Rolle spielen, ist aber bei geeigneter Matrixformulierung von untergeordneter Bedeutung. Effect of Matrix Composition on the Durability of Concretes Reinforced with Glass Fibre Fabric The mechanical performance of composites made of finegrained concrete and textile reinforcement can worsen markedly with increasing age if alkali-resistant glass (AR-glass) is used as the reinforcing material. For reliable practical applications of textile-reinforced concrete, precise knowledge as to the extent and causes of such degradation is indispensable. This paper discusses important aging mechanisms resulting from the composition of fine-grained concrete. Tensile tests on composites made of different concrete compositions distinguished from one another by their hydration kinetics and alkalinity were performed before and after accelerated aging. Composites made of concrete with high alkalinity showed dramatic losses of tensile strength and strain capacity. In contrast the mechanical performance of composites whose binders had reduced Portland cement clinker content plus added puzzolana was hardly affected by the accelerated aging. To clarify the mechanisms of degradation, yarn pullout tests were performed on specimens of equal matrix composition and age. Additionally, the morphology of the interphase between matrix and fibre was characterised using direct microscopic examination and analytical methods. The new formation of unfavourably structured products of hydration in the filament-matrix interphase and/or in the empty spaces between filaments was found to be the main reason for the performance losses observed. The morphology of these hydration products is determined to a great extent by the binder composition. Under unfavourable conditions corrosion of AR-glass can occur as well and lead to distinct composite damage. However, if the formulation of the binder is proper, bulk glass corrosion is of minor importance. [source]


From carbon nanotube coatings to high-performance polymer nanocomposites

POLYMER INTERNATIONAL, Issue 4 2008
Stéphane Bredeau
Abstract Since their discovery at the beginning of the 1990s, carbon nanotubes (CNTs) have been the focus of considerable research by both academia and industry due to their remarkable and unique electronic and mechanical properties. Among numerous potential applications of CNTs, their use as reinforcing materials for polymers has recently received considerable attention since their exceptional mechanical properties, combined with their low density, offer tremendous opportunities for the development of fundamentally new material systems. However, the key challenge remains to reach a high level of nanoparticle dissociation (i.e. to break down the cohesion of aggregated CNTs) as well as a fine dispersion upon melt blending within the selected matrices. Therefore, this contribution aims at reviewing the exceptional efficiency of CNT coating by a thin layer of polymer as obtained by an in situ polymerization process catalysed directly from the nanofiller surface, known as the ,polymerization-filling technique'. This process allows for complete destructuring of the native filler aggregates. Interestingly enough, such surface-coated carbon nanotubes can be added as ,masterbatch' in commercial polymeric matrices leading to the production of polymer nanocomposites displaying much better thermomechanical, flame retardant and electrical conductive properties even at very low filler loading. Copyright © 2007 Society of Chemical Industry [source]