Re-entrant Corner (re-entrant + corner)

Distribution by Scientific Domains


Selected Abstracts


Vibrations of skewed cantilevered triangular, trapezoidal and parallelogram Mindlin plates with considering corner stress singularities

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 13 2005
C. S. Huang
Abstract Based on the Mindlin shear deformation plate theory, a method is presented for determining natural frequencies of skewed cantilevered triangular, trapezoidal and parallelogram plates using the Ritz method, considering the effects of stress singularities at the clamped re-entrant corner. The admissible displacement functions include polynomials and corner functions. The admissible polynomials form a mathematically complete set and guarantee the solution convergent to the exact frequencies when sufficient terms are used. The corner functions properly account for the singularities of moments and shear forces at the re-entrant corner and accelerate the convergence of the solution. Detailed convergence studies are carried out for plates of various shapes to elucidate the positive effects of corner functions on the accuracy of the solution. The results obtained herein are compared with those obtained by other investigators to demonstrate the validity and accuracy of the solution. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Development of an optimal hybrid finite volume/element method for viscoelastic flows

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 11 2003
M. Aboubacar
Abstract A cell-vertex hybrid finite volume/element method is investigated that is implemented on triangles and applied to the numerical solution of Oldroyd model fluids in contraction flows. Particular attention is paid to establishing high-order accuracy, whilst retaining favourable stability properties. Elevated levels of elasticity are sought. The main impact of this study reveals that switching from quadratic to linear finite volume stress representation with discontinuous stress gradients, and incorporating local reduced quadrature at the re-entrant corner, provide enhance stability properties. Solution smoothness is achieved by adopting the non-conservative flux form with area integration, by appealing to quadratic recovered velocity-gradients, and through consistency considerations in the treatment of the time term in the constitutive equation. In this manner, high-order accuracy is maintained, stability is ensured, and the finer features of the flow are confirmed via mesh refinement. Lip vortices are observed for We>1, and a trailing-edge vortex is also apparent. Loss of evolution and solution asymptotic behaviour towards the re-entrant corner are also discussed. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Advances in modelling heat transfer through wood framed walls in fire

FIRE AND MATERIALS, Issue 6 2001
P. Clancy
Described in this paper are advances made in modelling heat transfer through wood framed walls in fire. Previously unpublished experimental results are also given. This type of modelling is used for the determination of the performance of fire safety systems, such as wood framed wall barriers, in accordance with new performance-based building regulations being introduced around the world. Advances include a discrete modelling method for radiative heat transfer in cavities with re-entrant corners and gaps formed by the shrinkage of stud cross-sections. It has been shown that the formation of the gaps can prevent temperatures rising in the fire side of studs by as much as 100,200°C. A simple means of modelling heat transfer by the movement of moisture and vapour, involving the modification of conductivity values has been developed. Sloughing of gypsum board sheets has been satisfactorily modelled assuming that a sheet sloughs when the temperature on the surface opposite the fire reaches the melting point of glass fibres in the gypsum board; that is, approximately 700°C. Recommendations on thermal properties obtained independently by other researchers are presented. Overall, the advances improve temperature predictions and broaden the range of walls that can be modelled including staggered stud walls as well as ordinary cavity walls. Copyright © 2002 John Wiley & Sons, Ltd. [source]