Rate Constant Increases (rate + constant_increase)

Distribution by Scientific Domains


Selected Abstracts


The Effect of Surface Area and Crystal Structure on the Catalytic Efficiency of Iron(III) Oxide Nanoparticles in Hydrogen Peroxide Decomposition

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 16 2010
Cenek Gregor
Abstract Iron(II) oxalate dihydrate has been used as a readily decomposable substance for the controlled synthesis of nanosized iron(III) oxides. The polymorphous composition, particle size and surface area of these iron oxide nanoparticles were controlled by varying the reaction temperature between 185 and 500 °C. As-prepared samples were characterized by XRD, low-temperature and in-field Mössbauer spectroscopy, BET surface area and the TEM technique. They were also tested as heterogeneous catalysts in hydrogen peroxide decomposition. At the selected temperatures, the formed nanomaterials did not contain any traces of amorphous phase, which is known to considerably reduce the catalytic efficiency of iron(III) oxide catalysts. As the thickness of the sample (, 2 mm) was above the critical value, a temporary temperature increase ("exo effect") was observed during all quasi-isothermal decompositions studied, irrespective of the reaction temperature. Increasing the reaction temperature resulted in a shift of the exo effect towards shorter times and an increased content of maghemite phase. The maghemite content decreases above 350 °C as a result of a thermally induced polymorphous transition into hematite. The catalytic data demonstrate that the crystal structure of iron(III) oxide (i.e. the relative contents of maghemite and hematite) does not influence the rate of hydrogen peroxide decomposition. However, the rate constant increases monotonously with increasing sample surface area (and decreasing thermolysis temperature), reaching a maximum of 27,×,10,3 min,1(g/L),1 for the sample with a surface area of 285 m2,g,1. This rate constant is currently the highest reported value of all known iron oxide catalytic systems and is even slightly higher than that observed for the most efficient catalyst reported to date, which has a significantly larger surface area of 337 m2,g,1. This surprisingly high catalytic activity at relatively low surface area can be ascribed to the absence of a amorphous phase in the samples prepared in this study. Taking into account these new findings, the contributions of the key factors highlighted above (surface area, particle size, crystal structure, crystallinity) to the overall activity of iron oxides forhydrogen peroxide decomposition are discussed. [source]


The effects of physiologically important nonmetallic ligands in the reactivity of metallothionein towards 5,5,-dithiobis(2-nitrobenzoic acid)

FEBS JOURNAL, Issue 18 2001
A new method for the determination of ligand interactions with metallothionein
The reaction of Cd5Zn2 -metallothionein (MT) with 5,5,-dithiobis(2-nitrobenzoic acid) (Nbs2) has been studied at different reagent stoichiometries, pH and temperature conditions and in the presence of several ligands. At stoichiometries of Nbs2 to MT from 0.5 to 5, the reaction followed first order kinetics. The first order rate constants obtained were independent from the concentration of Nbs2 but were linearly dependent on the concentration of MT. At higher Nbs2/MT stoichiometries, the reaction deviates from first order kinetics and the observed rate constant increases. The reactivity of MT towards Nbs2 has been probed at 4 µm concentration of both reagents where the reaction is monophasic and is characterized by a linear Arrhenius plot (Ea = 45.8 ± 2.7 kJ·mol,1). It has been demonstrated that metal release at low pH or subtraction from MT by EDTA substantially increases the reactivity of MT towards Nbs2. At the same time, a number of nonmetallic ligands moderately accelerate the reaction of MT with Nbs2 and hyperbolic dose,response curves were obtained. The data have been interpreted with the binding of ligands to MT and following MT. Ligand binding constants were calculated as follows: ATP, K = 0.31 ± 0.06 mm; ADP, K = 0.26 ± 0.07 mm. Several compounds such as AMP, S -methylglutathione, and phosphate had no effect on the reaction, but Zn2+ ions showed an inhibitory effect at micromolar concentrations. [source]


Solvent effects on kinetics of an aromatic nucleophilic substitution reaction in mixtures of an ionic liquid with molecular solvents and prediction using artificial neural networks

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 3 2009
Aziz Habibi-Yangjeh
Kinetics of the reaction between 1-chloro-2,4-dinitrobenzene and aniline was studied in mixtures of 1-ethyl-3-methylimidazolium ethylsulfate ([EMIM][EtSO4]) with methanol, chloroform, and dimethylsulfoxide at 25°C. Single-parameter correlations of log kA versus normalized polarity parameter (ENT), hydrogen-bond acceptor basicity (,), hydrogen-bond donor acidity (,), and dipolarity/polarizability (,*) of media do not give acceptable results. Multiparameter linear regression (MLR) of log kA versus the solvatochromic parameters demonstrates that the reaction rate constant increases with ENT, ,*, and , and decreases with , parameter. To predict accurately solvent effects on the rate constant, optimized artificial neural network with three inputs (including ,, ,*, and , parameters) was applied for prediction of the log kA values in the prediction set. It was found that properly selected and trained neural network could fairly represent the dependence of the reaction rate constant on solvatochromic parameters. Mean percent deviation of 5.023 for the prediction set by the MLR model should be compared with the value of 0.343 by the artificial neural network model. These improvements are due to the fact that the reaction rate constant shows nonlinear correlations with the solvatochromic parameters. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 153,159, 2009 [source]


Non-aqueous reverse micelles media for the SNAr reaction between 1-fluoro-2,4-dinitrobenzene and piperidine,

JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 12 2006
N. Mariano Correa
Abstract The kinetics of the nucleophilic aromatic substitution (SNAr) reaction between 1-fluoro-2,4- dinitrobenzene (FDNB) and piperidine (PIP) in ethylene glycol (EG)/ sodium bis (2-ethyl-1-hexyl) sulfosuccinate (AOT)/n -heptane and dimethylformamide (DMF)/AOT/n -heptane non-aqueous reverse micelle systems is reported. EG and DMF were used as models for hydrogen bond donor (HBD) and non-hydrogen bond donor (non-HBD) polar solvents, respectively. The reaction was found not to be base catalyzed in these media. A mechanism to rationalize the kinetic results is proposed in which both reactants may be distributed between the two environments. The distribution constants of FDNB between the organic and each micellar pseudophases were determined by an independent fluorescence method. These results were used to evaluate the amine distribution constant and the intrinsic second-order rate coefficient of the SNAr reaction in the interface. The reaction was also studied in the pure solvents EG and DMF for comparison. The results in EG/AOT/n -heptane at Ws,=,2 give similar kinetic profiles than in water/AOT/n -hexane at W,=,10. With these HBD solvents, the interface saturation by the substrate is reached at around the same value of [AOT] and the intrinsic second-order rate coefficient in the interface, k,b, has comparable values. On the other hand, when DMF is used as a polar non-HBD solvent, the intrinsic second-order rate constant increases by a factor of about 200 as compared to the values obtained using HBD solvents as a polar core. It is concluded that higher catalytic power is obtained when non-HBD solvents are used as polar solvent in the micelle interior. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Kinetic and DFT Studies on the Photoinduced Desorption of Sulfur from Gold Nanoparticles Loaded on Titanium Dioxide

CHEMPHYSCHEM, Issue 12 2005
Tomokazu Kiyonaga
Cleaning poisoned gold catalysts: Kinetic analysis of the photoinduced desorption of sulfur from gold nanoparticles loaded on TiO2 particles in water revealed that the rate constant increases with increasing pH. Photoelectrochemical measurements and DFT calculations led to the conclusion that this reaction results from an upward shift in the Fermi energy of gold nanoparticles by irradiation. The picture shows a high-resolution TEM image of an Au nanoparticle on TiO2. [source]