Rat MSCs (rat + msc)

Distribution by Scientific Domains

Selected Abstracts

Polypyrrole Thin Films Formed by Admicellar Polymerization Support the Osteogenic Differentiation of Mesenchymal Stem Cells

Harold Castano
Abstract Summary: The objective of this study was to evaluate the attachment, proliferation, and differentiation of rat mesenchymal stem cells (MSC) toward the osteoblastic phenotype seeded on polypyrrole (PPy) thin films made by admicellar polymerization. Three different concentrations of pyrrole (Py) monomer (20, 35, and 50,,10,3M) were used with the PPy films deposited on tissue culture polystyrene dishes (TCP). Regular TCP dishes and PPy polymerized on TCP by chemical polymerization without surfactant using 5,,10,3M Py, were used as controls. Rat MSC were seeded on these surfaces and cultured for up to 20 d in osteogenic media. Surface topography was characterized by atomic force microscopy, X-ray photoelectron spectroscopy, and static contact angle. Cell attachment, proliferation, alkaline phosphatase (ALP) activity, and calcium content were measured to evaluate the ability of MSC to adhere and differentiate on PPy-coated TCP. Increased monomer concentrations resulted in PPy films of increased thickness and surface roughness. PPy films generated by different monomer concentrations induced drastically different cellular events. A wide spectrum of cell attachment characteristics (from excellent cell attachment to the complete inability to adhere) were obtained by varying the monomer concentration from 20 m to 50,,10,3M. In particular the 20,,10,3M PPy thin films demonstrated superior induction of MSC osteogenicity, which was comparable to standard TCP dishes, unlike PPy films of similar thickness prepared by chemical polymerization without surfactant. Adhesion of mesenchymal stem cells on tissue culture plates (TCP) coated with polypyrrole thin films made by admicellar polymerization. [source]

Engineering of Vascular Grafts With Genetically Modified Bone Marrow Mesenchymal Stem Cells on Poly (Propylene Carbonate) Graft

Jun Zhang
Abstract:, Bone marrow mesenchymal stem cells (MSCs) have demonstrated their pluripotency to differentiate into different cell lineages and may be an alternative cell source for vascular tissue engineering. The objective of this study is to create small diameter vessels by seeding and culture of genetically modified MSCs onto a synthetic polymer scaffold produced by an electrospinning technique. A tubular scaffold (2 mm in diameter) with a microstructure of nonwoven fibers was produced by electrospinning of poly (propylene carbonate) (PPC). Rat MSCs obtained from bone marrow were expanded in culture and modified with vasculoprotective gene endothelial nitric oxide synthase (eNOS) or marker gene green fluorescent protein (GFP). These MSCs were seeded onto the electrospun fibrous grafts (internal diameter = 2 mm), and cultured in 5% CO2 at 37C. The growth of MSCs in the scaffold was analyzed with scanning electron microscopy (SEM) and hematoxylin and eosin (H&E) staining. The gene transfer and transgenic gene expression were examined with fluorescence-activated cell sorting (FACS), immunochemical staining, reverse transcriptase-polymerase chain reaction (RT-PCR), and western blot. The production of nitric oxide (NO) by the engineered vessels was measured with an NO detection kit. Our data showed that the seeded cells integrated with the microfibers of the scaffold to form a three-dimensional cellular network, indicating a favorable interaction between this synthetic PPC scaffold with MSCs. High transduction efficiency was obtained with the use of concentrated retrovirus in the gene transfection of MSCs. The eNOS gene transcripts and protein were detected in the grafts seeded with eNOS-modified MSCs by RT-PCR and immunochemical staining. The amount of NO produced by grafts seeded with eNOS-modified MSCs was comparable to that produced by native blood vessels, and it was significantly higher than that in the grafts seeded with nonmodified MSCs. In summary, the vascular graft produced by culture of eNOS gene-modified MSCs onto the electrospun tubular scaffolds shows promising results in terms of function. The use of MSCs and therapeutic genes in tissue engineering of blood vessels could be helpful in improving vessel regeneration and patency. [source]

Pre-activation of retinoid signaling facilitates neuronal differentiation of mesenchymal stem cells

Yang Bi
Mesenchymal stem cells (MSCs) can differentiate into neurons in an appropriate cellular environment. Retinoid signaling pathway is required in neural development. However, the effect and mechanism through retinoid signaling regulates neuronal differentiation of MSCs are still poorly understood. Here, we report that all-trans-retinoic acid (ATRA) pre-induction improved neuronal differentiation of rat MSCs. We found that, when MSCs were exposed to different concentrations of ATRA (0.01,100 ,mol/L) for 24 h and then cultured with modified neuronal induction medium (MNM), 1 ,mol/L ATRA pre-induction significantly improved neuronal differentiation efficiency and neural-cell survival. Compared with MNM alone induced neural-like cells, ATRA/MNM induced cells expressed higher levels of Nestin, neuron specific enolase (NSE), microtubule-associated protein-2 (MAP-2), but lower levels of CD68, glial fibrillary acidic protein (GFAP), and glial cell line-derived neurotrophic factor(GDNF), also exhibited higher resting membrane potential and intracellular calcium concentration, supporting that ATRA pre-induction promotes maturation and function of derived neurons but not neuroglia cells from MSCs. Endogenous retinoid X receptors (RXR) RXR, and RXR, (and to a lesser extent, RXR,) were weakly expressed in MSCs. But the expression of RAR, and RAR, was readily detectable, whereas RAR, was undetectable. However, at 24 h after ATRA treatment, the expression of RAR,, not RAR, or RAR,, increased significantly. We further found the subnuclear redistribution of RAR, in differentiated neurons, suggesting that RAR, may function as a major mediator of retinoid signaling during neuronal differentiation from MSCs. ATRA treatment upregulated the expression of Vimentin and Stra13, while it downregulated the expression of Brachyury in MSCs. Thus, our results demonstrate that pre-activation of retinoid signaling by ATRA facilitates neuronal differentiation of MSCs. [source]

Early osteoblastic differentiation induced by dexamethasone enhances adenoviral gene delivery to marrow stromal cells

Jeremy S. Blum
Abstract We investigated the implications of induced osteogenic differentiation on gene delivery in multipotent rat marrow stromal cells (MSCs). Prior to genetic manipulation cells were cultured with or without osteogenic supplements (5 10,8 M dexamethasone, 160 ,M l-ascorbic acid 2-phosphate, and 10 mM ,-glycerophosphate). Comparison of liposome, retroviral, and adenoviral vectors demonstrated that all three vectors could mediate gene delivery to primary rat MSCs. When these vectors were applied in the absence or presence of osteogenic supplements, we found that MSCs differentiated prior to transduction with adenovirus type 5 vectors produced a 300% increase in transgene expression compared to MSCs that were not exposed to osteogenic supplements. This differentiation effect appeared specific to adenoviral mediated gene delivery, since there was minimal increase in retroviral gene delivery and no increase in liposome gene delivery when MSCs were treated with osteogenic supplements. In addition, we also determined this increase in transgene production to occur at a higher concentration of dexamethasone (5 10,8 M) in the culture medium of MSCs prior to adenoviral transduction. We found that this increased transgene production could be extended to the osteogenic protein, human bone morphogenetic protein 2 (hBMP-2). When delivered by an adenoviral vector, hBMP-2 transgene production could be increased from 1.4 ng/105 cells/3 days to 4.3 ng/105 cells/3 days by culture of MSCs with osteogenic supplements prior to transduction. These results indicate that the utility of MSCs as a therapeutic protein delivery mechanism through genetic manipulation can be enhanced by pre-culture of these cells with dexamethasone. 2003 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source]