Home About us Contact | |||
Rat Bladder (rat + bladder)
Selected AbstractsDevelopmental expression of glial cell-line derived neurotrophic factor, neurturin, and their receptor mRNA in the rat urinary bladderNEUROUROLOGY AND URODYNAMICS, Issue 1 2003Takahiro Kawakami Abstract Aims: Glial cell-line derived neurotrophic factor (GDNF) and related factors neurturin (NRTN), artemin, and persephin are members of the GDNF family of neurotrophic factors. GDNF and NRTN bind to the tyrosine kinase receptor Ret and the receptors GFR,1 and GFR,2. The objective was to examine the developmental expression of GDNF, NRTN, and their receptors within the rat urinary bladder. Methods: Rat bladders dissected from embryonic day (E) 15, postnatal day (P) 0, P14, P28, and adult rats (P60) were investigated by semiquantitative reverse transcriptase polymerase chain reaction. Embryos (E15, E16, and E17) were immunohistochemically stained for neurofilament. Results: GDNF and Ret mRNA levels at E15 were the highest of all the stages we examined and then immediately decreased. In contrast, NRTN mRNA levels did not change between E15 and postnatal day 14; thereafter, they gradually but insignificantly increased. GFR,1 and GFR,2 mRNA levels were high at E15, after which their signal intensities decreased. In whole-mounted specimens, neurofilament-positive axons were first detected in the bladder at E16. Conclusions: Our results suggest that GDNF and NRTN may act as trophic factors for neural in-growth to the bladder and/or for the maintenance of mature neurons innervating the bladder. These factors might also be involved in bladder morphogenesis. Neurourol. Urodynam. 22:83,88, 2003. © 2003 Wiley-Liss, Inc. [source] Electroporation-mediated muscarinic M3 receptor gene transfer into rat urinary bladderINTERNATIONAL JOURNAL OF UROLOGY, Issue 11 2004MASAYUKI OTANI Abstract Background: Muscarinic M3 (M3) receptor has been recognized as a major muscarinic receptor for smooth muscle contractions of the urinary bladder. Under the hypothesis that overexpression of M3 receptor in the urinary bladder would enhance urinary bladder contractions, we have transferred the M3 receptor gene into rat bladders using electroporation (EP) and evaluated the functional expression of the transferred gene. Methods: Plasmids expressing luciferase, a green fluorescence protein and M3 receptor were injected into the rat bladder and square-wave electric pulses were immediately applied. Two days after gene transfer, we analyzed gene expression. Immunohistochemical staining was performed and the contractile responses from isolated bladder strips, which were induced KCl, carbachol and electrical field stimulation (EFS), were evaluated. Results: The optimal conditions of electroporation were 8 pulses, 45 voltages, 50 milliseconds/pulses and 1 Hz. Under these conditions, luciferase gene expression was enhanced approximately 300-fold, compared to an injection of DNA only. Regarding immunohistochemistry with an anti-M3 receptor, an increase in immunoactivity was observed in the M3 receptor gene transferred rat bladder, compared to the bladder of the control rat. In rats with the transferred M3 receptor gene, carbachol- and EFS-induced maximum contractile responses of bladder smooth muscle strips significantly increased. Conclusions: These findings suggest that an in vivo EP procedure is an useful method for gene transfer into the bladder and that an overexpression of M3 receptor in the rat bladder enhances bladder contractility. This technique may become a new treatment modality for detrusor underactivity. [source] Autonomous contractile activity in the isolated rat bladder is modulated by a TRPV1 dependent mechanism,NEUROUROLOGY AND URODYNAMICS, Issue 3 2007Thomas Gevaert Abstract Aims Resiniferatoxin (RTX), a vanilloid compound and agonist of the transient receptor potential channel 1 (TRPV1), is known for its beneficial effects on neurogenic detrusor overactivity. The mainstream rationale for its use is the desensitization of TRPV1 on sensory bladder afferents. However, recent findings showed that TRPV1 is present in other cell types in the bladder. To eliminate the effects of RTX on spinal and central neural circuits, we investigated autonomous contractility in normal and neurogenic rat bladders after treatment with RTX. Methods Female Wistar rats were made paraplegic at vertebral level T8,T9. Animals were intravesically pre-treated with vehicle (ethanol 5%) or RTX (100 nM) and sacrificed after 72 hr. Each bladder was excised and placed in a heated organ bath, where intravesical pressures were measured. Effects on contractile parameters of intravesical volume load, the non-selective muscarinic receptor agonist carbachol (CA) and electrical stimulation (ES) of nerves were studied in both groups. Results In RTX-treated normal bladders we found shorter contractions with higher amplitude than in control bladders (P,<,0.05). In RTX-treated neurogenic bladders the amplitude and duration of autonomous contractions were increased compared with controls (P,<,0.05). Furthermore RTX induced an increased response to CA and to ES (P,<,0.05). Conclusions RTX significantly affected the properties of autonomous bladder contractile activity. This provides evidence for local effects of RTX on bladder contractile activity, which are not mediated by afferent neural pathways and which may contribute to the beneficial effects on detrusor overactivity. TRPV1 and TRPV1+ cells seem to play an important role in (autonomous) bladder contractility. Neurourol. Urodynam. 26:424,432, 2007. © 2006 Wiley-Liss, Inc. [source] Effects of chronic treatment with vardenafil, a phosphodiesterase 5 inhibitor, on female rat bladder in a partial bladder outlet obstruction modelBJU INTERNATIONAL, Issue 7 2009Seiji Matsumoto OBJECTIVES To investigate whether vardenafil, a phosphodiesterase 5 (PDE-5) inhibitor, would protect the bladder from decompensatory changes in a 4-week rat bladder outlet obstruction (BOO) model, as evidence has been accumulating that PDE-5 inhibitors improve lower urinary tract symptoms (LUTS) in patients with benign prostatic hyperplasia (BPH). MATERIALS AND METHODS In all, 50 12-week-old female Sprague-Dawley rats were divided into five equal groups; group 1, sham operated vehicle control rats; group 2, BOO vehicle rats; group 3,5, BOO rats given oral vardenafil at 5, 20, 80 mg/L, respectively. Vardenafil was given in drinking water from the day of surgery. At 4-weeks after the introduction of BOO, vardenafil was washed-out by giving water for 24,48 h, and then the bladder was excised and dissected into four longitudinal strips for isometric organ-bath assay. Contractile responses of bladder strips to electrical field stimulation (EFS), carbachol and KCl was determined for each group. RESULTS BOO induced a significant increase in bladder weight in group 2 compared with group 1. Bladder weights of groups 3,5 were not significantly different from that of group 2. The contractile forces in response to EFS, carbachol and KCl in group 2 were 30.7,51.7% of those in group 1. Vardenafil treatment in groups 3,5 generally did not block the BOO-induced reduction of contractile force in the bladder strips. However, treatment with a high dose of vardenafil resulted in a significant increase in the contractile response to carbachol (78.4% group 5 vs 51.7% group 2). CONCLUSION Chronic treatment with a high dose of vardenafil protected the rat bladder from BOO-induced contractile dysfunction to carbachol. [source] Pharmacological characterization of a novel investigational antimuscarinic drug, fesoterodine, in vitro and in vivoBJU INTERNATIONAL, Issue 8 2008Peter Ney OBJECTIVE To investigate the primary pharmacology of fesoterodine (a novel antimuscarinic drug developed for treating overactive bladder) and SPM 7605 (its active metabolite, considered to be the main pharmacologically active principle of fesoterodine in man) against human muscarinic receptor subtypes, and to investigate in vitro and in vivo functional activity of these agents on the rat bladder compared with existing standard agents. MATERIALS AND METHODS The displacement of radioligand binding by fesoterodine, SPM 7605 and standard agents in membrane preparations of Chinese hamster ovary (CHO) cells expressing the different human muscarinic receptors (M1,M5) was characterized. Agonistic and antagonistic activities were studied using different CHO cell lines stably expressing the human recombinant muscarinic receptor subtypes. The effects of fesoterodine and SPM 7605 on isolated bladder strips contracted by carbachol or electrical field stimulation (EFS) were investigated. In vivo the effects of fesoterodine and SPM 7605 on micturition variables were assessed using continuous cystometry in conscious female Sprague-Dawley rats, and compared to those of oxybutynin and atropine. RESULTS In vitro SPM 7605 potently inhibited radioligand binding at all five human muscarinic receptor subtypes with equal affinity across all five. Fesoterodine had a similar balanced selectivity profile but was less potent than SPM 7605. Both substances were competitive antagonists of cholinergic agonist-stimulated responses in human M1-M5 cell lines and had a similar potency and selectivity profile to the radioligand-binding studies. In rat bladder strips, fesoterodine and SPM 7605 caused a rightward shift of the concentration-response curve for carbachol with no depression of the maximum, and concentration-dependently reduced contractions induced by EFS. The potency of both drugs was similar to that of atropine and oxybutynin. In the presence of the esterase inhibitor neostigmine, the concentration-response curve of fesoterodine was shifted to the right, suggesting that part of the activity was caused by metabolism to SPM 7605 by tissue enzymes. In vivo, low doses (0.01 mg/kg) of fesoterodine and SPM 7605 reduced micturition pressure and increased intercontraction intervals and bladder capacity, but did not affect residual volume. CONCLUSIONS Fesoterodine and its active metabolite, SPM 7605, are nonsubtype selective, competitive antagonists of human muscarinic receptors, but SPM 7605 has greater potency than the parent compound. Pharmacodynamic studies in the rat bladder in vitro confirm the competitive muscarinic antagonist profile of these agents in a native tissue preparation, and in vivo studies in the rat showed effects on bladder function consistent with a muscarinic antagonist profile. [source] In vivo accumulation of different hypericin ion pairs in the urothelium of the rat bladderBJU INTERNATIONAL, Issue 3 2005Ann Huygens OBJECTIVE To optimise the diagnostic and phototherapeutic efficacy of hypericin in superficial bladder cancer, by developing a bladder instillation fluid that does not depend on the presence of plasma proteins for an appropriate and reliable urothelial uptake of hypericin. MATERIALS AND METHODS Sodium hypericinate (in distilled water, in sodium phosphate buffer, or in polyethylene glycol) and several other hypericinate salts (potassium, lysine, TRIS or hexylamine) were instilled with no plasma constituents into the rat bladder. The accumulation of hypericin was assessed with fluorescence microscopy. RESULTS The diagnostic and phototherapeutic efficacy of hypericin depends on its ability to penetrate the tumour lesions sufficiently to show a fluorescent signal or elicit a photodynamic response. Several instillation fluids meet the purpose, as the urothelial accumulation of hypericin was similar to that obtained with the instillation fluid supplemented with plasma proteins, used in clinical practice. The highest concentrations of hypericin in the urothelium of the rat bladder were obtained with hypericin instillation solutions prepared with distilled water or 20% polyethylene glycol 400 in distilled water. Fluorescence microscopy showed that hypericin was selectively localized in the urothelium. Furthermore, all variables investigated (hydrophilic/lipophilic balance, pH, saline, presence of organic solvent) can dramatically influence the in vivo accumulation of hypericin. CONCLUSION An appropriate and reliable urothelial uptake of hypericin does not depend on the presence of plasma protein supplements in the bladder instillation fluid. [source] Urothelial progenitor cells: regional differences in the rat bladderCELL PROLIFERATION, Issue 2 2007M. M. Nguyen As yet there is no marker nor methodology to specifically isolate urothelial stem cells, and thus demonstrate multi-potential differentiation and self-renewal. Here, our goal was to evaluate the distribution of progenitor cells that carry two general major attributes of stem cells: clonogenicity and proliferative capacity. Materials and methods: The bladders of Fisher rats were divided into caudal and cephalic segments and primary cultures were established from the harvested urothelial cells. Results: We found that colony-forming efficiency was almost 2-fold higher for cells from the caudal bladder compared to the cephalic bladder. Doubling time was significantly faster for cells harvested from the caudal bladder at initial plating. This suggested that the caudal bladder harbours a higher density of urothelial progenitor cells. With passage to p4, the differences between the upper and lower bladder were lost, suggesting selection of proliferative cells with serial passage. Based on Ki-67 staining, there was no geographical difference in cell proliferation under normal homeostatic in vivo conditions. Conclusions: These results demonstrate geographical sequestration of urothelial progenitor cells to the area of the bladder that encompasses the bladder neck and trigone, which may be a factor in pathological disparities between the trigone and remaining bladder. [source] Reduction of major histocompatibility complex class I expression on bladder carcinoma following tumor antigen-pulsed dendritic cell vaccine: Implications for immunoresistance in therapyINTERNATIONAL JOURNAL OF UROLOGY, Issue 7 2010Mengqiang Li Objectives: To clarify the relationship between a decreased major histocompatibility complex class I (MHC-I) expression on bladder tumors and decreased immunological efficacy of tumor antigen-pulsed dendritic cell vaccine in a rat bladder carcinoma model induced by N-methyl-N-nitrosourea irrigation. Methods: Enzyme-linked immunosorbent assay was used to evaluate interferon-gamma concentration in the serum and colorimetric lactate dehydrogenase release assay in vitro was used to test the cytotoxicity capability of T lymphocytes. MHC-I expression on tumor cells was detected by flow cytometry and analyzed with CellQuest software. Results: The tumor antigen sensitized dendritic cell vaccine group showed decreased hyperplastic formations, lower pathological stages in rat bladders and more potent cytotoxicity activity (P < 0.001) than the dendritic cell vaccine group. Additionally, immunization with pulsed dendritic cell vaccine induced higher specific cytokine production of interferon-gamma. Nevertheless, a decreased MHC-I expression on bladder tumors was tested after immunotherapy by pulsed dendritic cell vaccine on week 15. As expected, the cytotoxic activity of T lymphocytes from rats on tumor cells with low MHC-I expression was also decreased to 19.70 ± 4.82% as compared with tumor cells with high MHC-I (52.10 ± 8.66%, P = 0.005). Conclusions: Tumor antigen sensitized dendritic cell vaccine has beneficial activity on N-methyl-N-nitrosourea-induced bladder cancer in situ in rats, but therapeutic responses are accompanied by decreased MHC-I expression on tumors, possibly suggesting poor long-term therapeutic outcomes. [source] Electroporation-mediated muscarinic M3 receptor gene transfer into rat urinary bladderINTERNATIONAL JOURNAL OF UROLOGY, Issue 11 2004MASAYUKI OTANI Abstract Background: Muscarinic M3 (M3) receptor has been recognized as a major muscarinic receptor for smooth muscle contractions of the urinary bladder. Under the hypothesis that overexpression of M3 receptor in the urinary bladder would enhance urinary bladder contractions, we have transferred the M3 receptor gene into rat bladders using electroporation (EP) and evaluated the functional expression of the transferred gene. Methods: Plasmids expressing luciferase, a green fluorescence protein and M3 receptor were injected into the rat bladder and square-wave electric pulses were immediately applied. Two days after gene transfer, we analyzed gene expression. Immunohistochemical staining was performed and the contractile responses from isolated bladder strips, which were induced KCl, carbachol and electrical field stimulation (EFS), were evaluated. Results: The optimal conditions of electroporation were 8 pulses, 45 voltages, 50 milliseconds/pulses and 1 Hz. Under these conditions, luciferase gene expression was enhanced approximately 300-fold, compared to an injection of DNA only. Regarding immunohistochemistry with an anti-M3 receptor, an increase in immunoactivity was observed in the M3 receptor gene transferred rat bladder, compared to the bladder of the control rat. In rats with the transferred M3 receptor gene, carbachol- and EFS-induced maximum contractile responses of bladder smooth muscle strips significantly increased. Conclusions: These findings suggest that an in vivo EP procedure is an useful method for gene transfer into the bladder and that an overexpression of M3 receptor in the rat bladder enhances bladder contractility. This technique may become a new treatment modality for detrusor underactivity. [source] Autonomous contractile activity in the isolated rat bladder is modulated by a TRPV1 dependent mechanism,NEUROUROLOGY AND URODYNAMICS, Issue 3 2007Thomas Gevaert Abstract Aims Resiniferatoxin (RTX), a vanilloid compound and agonist of the transient receptor potential channel 1 (TRPV1), is known for its beneficial effects on neurogenic detrusor overactivity. The mainstream rationale for its use is the desensitization of TRPV1 on sensory bladder afferents. However, recent findings showed that TRPV1 is present in other cell types in the bladder. To eliminate the effects of RTX on spinal and central neural circuits, we investigated autonomous contractility in normal and neurogenic rat bladders after treatment with RTX. Methods Female Wistar rats were made paraplegic at vertebral level T8,T9. Animals were intravesically pre-treated with vehicle (ethanol 5%) or RTX (100 nM) and sacrificed after 72 hr. Each bladder was excised and placed in a heated organ bath, where intravesical pressures were measured. Effects on contractile parameters of intravesical volume load, the non-selective muscarinic receptor agonist carbachol (CA) and electrical stimulation (ES) of nerves were studied in both groups. Results In RTX-treated normal bladders we found shorter contractions with higher amplitude than in control bladders (P,<,0.05). In RTX-treated neurogenic bladders the amplitude and duration of autonomous contractions were increased compared with controls (P,<,0.05). Furthermore RTX induced an increased response to CA and to ES (P,<,0.05). Conclusions RTX significantly affected the properties of autonomous bladder contractile activity. This provides evidence for local effects of RTX on bladder contractile activity, which are not mediated by afferent neural pathways and which may contribute to the beneficial effects on detrusor overactivity. TRPV1 and TRPV1+ cells seem to play an important role in (autonomous) bladder contractility. Neurourol. Urodynam. 26:424,432, 2007. © 2006 Wiley-Liss, Inc. [source] M2 mediated contractions of human bladder from organ donors is associated with an increase in urothelial muscarinic receptors,NEUROUROLOGY AND URODYNAMICS, Issue 1 2007Alan S. Braverman Abstract Aims Previous studies have shown increased density of M2 receptors in hypertrophied rat bladders that possess an M2 contractile phenotype. The aim of the current study is to determine whether human bladders with an M2 contractile phenotype also have a greater density of bladder M2 receptors. Materials and Methods Human bladders were obtained from 24 different organ transplant donors. Darifenacin and methoctramine affinity was determined by the rightward shift of cumulative carbachol concentration contractile response curves for each bladder. Radioligand binding and immunoprecipitation was used to quantify M2 and M3 subtypes in isolated detrusor muscle and urothelium. In addition, pig bladder muscle and urothelial receptors were quantified for comparison. Results In the human urothelium total, M2 and M3 muscarinic receptor density is significantly negatively correlated with the affinity of darifenacin for inhibition of contraction of the detrusor muscle. In the detrusor muscle there is no correlation between receptor density and darifenacin affinity for inhibition of contraction. Muscarinic receptor density is greater in the muscle than in the urothelium in human bladders whereas in the pig bladder the density is greater in the urothelium than in the muscle. Conclusions The greater density of urothelial muscarinic receptors in human bladders with lower darifenacin affinity, indicative of a greater contribution of M2 receptors to the contractile response, points towards a possible role of the urothelium in controlling M2 mediated contractile phenotype. In comparison between human and pig bladders, the distribution of muscarinic receptor subtypes in the muscle and urothelium are quite different. Neurourol. Urodynam. © 2006 Wiley-Liss, Inc. [source] Comparison study of autonomous activity in bladders from normal and paraplegic rats,,NEUROUROLOGY AND URODYNAMICS, Issue 4 2006Thomas Gevaert Abstract Aim To identify differences in the pattern of pressure generated by isolated bladders from normal and paraplegic rats. Materials and Methods Nine female Wister rats were made paraplegic by spinal cord transsection at the vertebral level T8-T9 and sacrificed between D21 and D28. A further group (n,=,9) was used as a control group. Each bladder was excised and placed in an organ bath where intravesical pressures were measured. Pressure changes were divided in two well-defined groups: macro-transients and spikes. The effects of intravesical volume load and muscarinic (M) agonists were studied. Results We demonstrated a higher frequency, a longer duration, and a higher variance of duration in macro-transients in the neurogenic group. Intravesical volume load influenced the amplitude and frequency of macro-transients in both groups similarly. The effects of the muscarinic (M2)-selective agonist arecaïdine were different in neurogenic bladder; the effects of the non-selective muscarinic (M)-agonist carbachol were similar in both groups. Conclusion We showed that the pattern of autonomous activity was significantly different between normal and neurogenic rat bladders. We also found evidence for alterations in the muscarinic response of isolated neurogenic rat bladders. This model offers an exciting new research tool to evaluate the detrusor activity in neurogenic and normal conditions. Neurourol. Urodynam. © 2006 Wiley-Liss, Inc. [source] |