Home About us Contact | |||
Rapid Accumulation (rapid + accumulation)
Selected AbstractsRapid accumulation of nucleostemin in nucleolus during newt regenerationDEVELOPMENTAL DYNAMICS, Issue 4 2007Nobuyasu Maki Abstract In newt regeneration, differentiated cells can revert to stem cell,like cells in which the proliferative ability and multipotentiality are restored after dedifferentiation. However, the molecular events that occur during the dedifferentiation still remain obscure. Nucleostemin has been identified in mammals as a nucleolar protein specific to stem cells and cancer cells. In this study, a newt nucleostemin homologue was cloned and its regulation was analyzed. During lens regeneration, the expression of nucleostemin was activated and nucleostemin rapidly accumulated in the nucleoli of dedifferentiating pigmented epithelial cells 2 days before cell cycle reentry. During limb regeneration, nucleostemin also accumulated in the nucleoli of degenerating multinucleate muscle fibers before blastema formation. These findings suggest that nucleostemin plays a role in the dedifferentiation of newt cells and can provide crucial clues for addressing the molecular events at early steps of cellular dedifferentiation in newts. Developmental Dynamics 236:941,950, 2007. © 2006 Wiley-Liss, Inc. [source] Upper Pleistocene-Holocene geomorphic changes dictating sedimentation rates and historical land use in the valley system of the Chifeng region, Inner Mongolia, northern ChinaEARTH SURFACE PROCESSES AND LANDFORMS, Issue 11 2010Y. Avni Abstract This study focuses on the late Quaternary landscape evolution in the Chifeng region of Inner Mongolia, China, its relations to the history of the Pleistocene-Holocene loess accumulation, erosion and redeposition, and their impact on human occupation. Based on 57 optically stimulated luminescence (OSL) ages of loess sediments, fluvial sand and floodplain deposits accumulated on the hill slopes and floodplains, we conclude that during most of the Pleistocene period the region was blanketed by a thick layer of aeolian loess, as well as by alluvial and fluvial deposits. The loess section is divided into two main units that are separated by unconformity. The OSL ages at the top of the lower reddish loess unit yielded an approximate age of 193,ka, roughly corresponding to the transition from MIS 7 to 6, though they could be older. The upper gray loess unit accumulated during the upper Pleistocene glacial phase (MIS 4,3) at a mean accumulation rate of 0·22,m/ka. Parallel to the loess accumulation on top of the hilly topography, active fans were operating during MIS 4,2 at the outlet of large gullies surrounding the major valley at a mean accumulation rate of 0·24,m/ka. This co-accumulation indicates that gullies have been a long-term geomorphic feature at the margins of the Gobi Desert since at least the middle Pleistocene. During the Holocene, the erosion of the Pleistocene loess on the hills led to the burial of the valley floors by the redeposited sediments at a rate that decreases from 3·2,m/ka near the hills to 1,0·4,m/ka1 in the central part of the Chifeng Valley. This rapid accumulation and the frequent shifts of the courses of the river prevented the construction of permanent settlements in the valley floors, a situation which changed only with improved man-made control of the local rivers from the tenth century AD. Copyright © 2010 John Wiley & Sons, Ltd. [source] Species richness and parasitism in an assemblage of parasitoids attacking maize stem borers in coastal KenyaECOLOGICAL ENTOMOLOGY, Issue 1 2003Guofa Zhou Abstract. 1. Parasitoids were reared from four species of lepidopteran stem borer collected in maize in southern coastal Kenya from 1992 to 1999. The stem borers included three native species, Sesamia calamistis Hampson, Busseola fusca Fuller, and Chilo orichalcociliellus (Strand), and one exotic borer, Chilo partellus (Swinhoe). A total of 174 663 caterpillars was collected, of which 12 645 were parasitised. 2. Twenty-six primary parasitoid species were reared from the exotic borer, C. partellus, indicating a rapid accumulation of native parasitoids on the alien borer. 3. The three most abundant parasitoids were the larval parasitoids Cotesia sesamiae Cameron, Cotesia flavipes (Cameron), and the pupal parasitoid Pediobius furvus Gahan. The pupal parasitoid Dentichasmias busseolae Heinrich and the larval parasitoid Goniozus indicus Ashmead were also common. All used an ingress-and-sting method of attack. 4. Cotesia flavipes, introduced into Kenya in 1993, was found in all seasons from 1997 onwards, and has become the most abundant stem borer larval parasitoid in the area. A native congener, Cotesia sesamiae, appeared in all seasons from 1992 to 1999. Together, these two parasitoids accounted for 83.3% of the parasitised borers. 5. Thirty parasitoid species were recovered in Kilifi district, 27 in Kwale, and 15 in Taita Taveta. Parasitism was much greater in Taita Taveta district than in Kilifi or Kwale districts. [source] The zinc finger protein Gfi1 acts upstream of TNF to attenuate endotoxin-mediated inflammatory responses in the lungEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2006Jianmin Jin Abstract Gfi1 is a 55-kD nuclear zinc finger protein that is differentially expressed in lymphoid and myeloid cells. Gfi1,/, mice show a very strong systemic response to the endotoxin LPS and die rapidly within 36,h with symptoms of septic shock. Here we report that the pathohysiological processes for this exaggerated inflammatory response take place in the lung. After LPS treatment, lungs of Gfi1,/, mice showed a rapid accumulation of mononuclear cells and a significant overproduction of inflammatory cytokines such as TNF, IL-1, and IL-6. Increased cytokine production was also observed in blood-free perfused lungs from Gfi1,/, mice exposed to either LPS or overventilation. Alveolar macrophages but not airway epithelial cells from Gfi1,/, mice were found to be responsible for the enhanced cytokine production. Strikingly, when the TNF gene was deleted, Gfi1,/, animals were completely rescued from LPS hypersensitivity and had significantly lower IL-1, and IL-6 levels. We conclude that the unrestrained endotoxin response of Gfi1,/, mice occurs mainly in the lung and that Gfi1 represents a novel factor limiting the inflammatory immune response of this organ, and propose that Gfi1 exerts its regulatory function in alveolar macrophages downstream of the LPS receptor (TLR4) and upstream of TNF. [source] Molecular characterization of the role of orphan receptor small heterodimer partner in development of fatty liver,HEPATOLOGY, Issue 1 2007Jiansheng Huang The orphan receptor Small Heterodimer Partner (SHP, NROB2) regulates metabolic pathways, including hepatic bile acid, lipid, and glucose homeostasis. We reported that SHP- deletion in leptin-deficient OB,/, mice increases insulin sensitivity, and prevents the development of fatty liver. The prevention of steatosis in OB,/,/SHP,/, double mutants is not due to decreased body weight but is associated with increased hepatic very-low-density lipoprotein (VLDL) secretion and elevated microsomal triglyceride transfer protein (MTP) mRNA and protein levels. SHP represses the transactivation of the MTP promoter and the induction of MTP mRNA by LRH-1 in hepatocytes. Adenoviral overexpression of SHP inhibits MTP activity as well as VLDL-apoB protein secretion, and RNAi knockdown of SHP exhibits opposite effects. The expression of SHP in induced in fatty livers of OB,/, mice and other genetic or dietary models of steatosis, and acute overexpression of SHP by adenovirus, result in rapid accumulation of neutral lipids in hepatocytes. In addition, the pathways for hepatic lipid uptake and lipogenic program are also downregulated in OB,/,/SHP,/, mice, which may contribute to the decreased hepatic lipid content. Conclusion: These studies demonstrate that SHP regulates the development of fatty liver by modulating hepatic lipid export, uptake, and synthesis, and that the improved peripheral insulin sensitivity in OB,/,/SHP,/, mice is associated with decreased hepatic steatosis. (HEPATOLOGY 2007.) [source] Superficial exudates of neutrophils prevent invasion of Bacillus anthracis bacilli into abraded skin of resistant miceINTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 3 2008Beth L. Hahn Summary Skin window procedures in humans have shown rapid accumulation of neutrophils into the exuded fluids above abraded skin. The present study was undertaken to determine if similar epicutaneous neutrophil accumulation might explain the extreme resistance of HRS/J mice, both hairless (hr/hr) and haired (hr/+), to experimental cutaneous Bacillus anthracis Sterne infections on abraded skin. In this study, very early (6 h) biopsies demonstrated a lack of bacilli in skin from the HRS/J hr/hr mice, indicating that the organisms never did invade in these animals as opposed to early skin entry and then efficient clearance by host responses in the tissues. Touch preparations of either the inoculation filter or the skin surface revealed more inflammatory cells, fewer bacilli, and a higher percentage of cell-associated bacilli in the HRS/J hr/hr mice than in comparator strains. In the HRS/J mice, cyclophosphamide treatment or separation of inoculated spores from the inflammatory infiltrates by a second filter below both produced marked increases in the number of bacilli observed. Examination of inoculation filter specimens demonstrated ingestion of spores and bacilli by neutrophils inside the filter at 6 h after inoculation. These findings suggest that an early and vigorous inflammatory cell infiltrate in HRS/J mice attacks the inoculated organisms above the skin surface and does not allow them to invade the tissues below. [source] Lifespan extension by dietary restriction is not linked to protection against somatic DNA damage in Drosophila melanogasterAGING CELL, Issue 3 2009Ursula Edman Summary Dietary restriction (DR) has been shown to robustly extend lifespan in multiple species tested so far. The pro-longevity effect of DR is often ascribed to an increase in cellular defense against somatic damage, most notably damage by reactive oxygen species (ROS), considered a major cause of aging. Especially irreversible damage to DNA, the carrier of genetic information, is considered a critical causal factor in aging. Using a recently developed transgenic Drosophila melanogaster model system harboring a lacZ-plasmid construct that can be recovered in E. coli, spontaneous DNA mutation frequency in flies under DR and ad libitum conditions are measured. Three different DR conditions, imposed by manipulating levels of different types of yeast sources, were tested in females and males of two lacZ reporter gene lines. Feeding with the ROS producer paraquat at 1 mM resulted in a rapid accumulation of somatic mutations, indicating that the frequency of mutations at the lacZ locus is a reliable marker for increased oxidative stress. However, none of the DR conditions altered the accumulation of spontaneous mutations with age. These results suggest that the beneficial effects of DR are unlikely to be linked to protection against oxidative somatic DNA damage. [source] Delayed kinetics of DNA double-strand break processing in normal and pathological agingAGING CELL, Issue 1 2008Olga A. Sedelnikova Summary Accumulation of DNA damage may play an essential role in both cellular senescence and organismal aging. The ability of cells to sense and repair DNA damage declines with age. However, the underlying molecular mechanism for this age-dependent decline is still elusive. To understand quantitative and qualitative changes in the DNA damage response during human aging, DNA damage-induced foci of phosphorylated histone H2AX (,-H2AX), which occurs specifically at sites of DNA double-strand breaks (DSBs) and eroded telomeres, were examined in human young and senescing fibroblasts, and in lymphocytes of peripheral blood. Here, we show that the incidence of endogenous ,-H2AX foci increases with age. Fibroblasts taken from patients with Werner syndrome, a disorder associated with premature aging, genomic instability and increased incidence of cancer, exhibited considerably higher incidence of ,-H2AX foci than those taken from normal donors of comparable age. Further increases in ,-H2AX focal incidence occurred in culture as both normal and Werner syndrome fibroblasts progressed toward senescence. The rates of recruitment of DSB repair proteins to ,-H2AX foci correlated inversely with age for both normal and Werner syndrome donors, perhaps due in part to the slower growth of ,-H2AX foci in older donors. Because genomic stability may depend on the efficient processing of DSBs, and hence the rapid formation of ,-H2AX foci and the rapid accumulation of DSB repair proteins on these foci at sites of nascent DSBs, our findings suggest that decreasing efficiency in these processes may contribute to genome instability associated with normal and pathological aging. [source] The cellular level of the recognition factor RssB is rate-limiting for ,S proteolysis: implications for RssB regulation and signal transduction in ,S turnover in Escherichia coliMOLECULAR MICROBIOLOGY, Issue 6 2002Mihaela Pruteanu Summary Degradation of the general stress sigma factor ,S of Escherichia coli is a prime example of regulated proteolysis in prokaryotes. Whereas exponentially growing cells rapidly degrade ,S, various stress conditions result in stabilization and, therefore, rapid accumulation of ,S. Proteolysis of ,S requires the response regulator RssB, a direct recognition factor with phosphorylation-dependent affinity for ,S, which targets ,S to the ClpXP protease. Here, we demonstrate that a sudden increase in ,S synthesis results in ,S stabilization, indicating titration of an essential proteolytic component. Evidence is provided that RssB is the overall rate-limiting factor for ,S proteolysis. As a consequence, the cell has to continuously adjust the expression of RssB to ,S in order to maintain ,S proteolysis in growing cells, despite variations in the rate of ,S synthesis. Such homeostatic feedback-coupling is provided by rssB transcription being dependent on the ,S -controlled rssAB operon promoter. However, strong and rapid increases in ,S synthesis, in re-sponse to acute stress, exceed the compensatory potential of this feedback loop with the result that ,S is stabilized because of RssB titration. We propose that RssB control of ,S proteolysis functions as a genetic switch, in which (i) the ,off' state (low ,S levels caused by proteolysis) is stabilized by a homeostatic negative feedback, and (ii) the threshold for switching to the ,on' state (high levels of stable ,S) is dependent on the cellular level of active, i.e. phosphorylated RssB. [source] How do membrane proteins sense water stress?MOLECULAR MICROBIOLOGY, Issue 4 2002Bert Poolman Summary Maintenance of cell turgor is a prerequisite for almost any form of life as it provides a mechanical force for the expansion of the cell envelope. As changes in extracellular osmolality will have similar physicochemical effects on cells from all biological kingdoms, the responses to osmotic stress may be alike in all organisms. The primary response of bacteria to osmotic upshifts involves the activation of transporters, to effect the rapid accumulation of osmo-protectants, and sensor kinases, to increase the transport and/or biosynthetic capacity for these solutes. Upon osmotic downshift, the excess of cytoplasmic solutes is released via mechanosensitive channel proteins. A number of breakthroughs in the last one or two years have led to tremendous advances in our understanding of the molecular mechanisms of osmosensing in bacteria. The possible mechanisms of osmosensing, and the actual evidence for a particular mechanism, are presented for well studied, osmoregulated transport systems, sensor kinases and mechanosensitive channel proteins. The emerging picture is that intracellular ionic solutes (or ionic strength) serve as a signal for the activation of the upshift-activated transporters and sensor kinases. For at least one system, there is strong evidence that the signal is transduced to the protein complex via alterations in the protein,lipid interactions rather than direct sensing of ion concentration or ionic strength by the proteins. The osmotic downshift-activated mechanosensitive channels, on the other hand, sense tension in the membrane but other factors such as hydration state of the protein may affect the equilibrium between open and closed states of the proteins. [source] Limits on the location of planetesimal formation in self-gravitating protostellar discsMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY: LETTERS (ELECTRONIC), Issue 1 2009C. J. Clarke ABSTRACT In this Letter, we show that if planetesimals form in spiral features in self-gravitating discs, as previously suggested by the idealized simulations of Rice et al., then in realistic protostellar discs, this process will be restricted to the outer regions of the disc (i.e. at radii in excess of several tens of au). This restriction relates to the requirement that dust has to be concentrated in spiral features on a time-scale that is less than the (roughly dynamical) lifetime of such features, and that such rapid accumulation requires spiral features whose fractional amplitude is not much less than unity. This in turn requires that the cooling time-scale of the gas is relatively short, which restricts the process to the outer disc. We point out that the efficient conversion of a large fraction of the primordial dust in the disc into planetesimals could rescue this material from the well-known problem of rapid inward migration at an approximate metre-size scale and that in principle the collisional evolution of these objects could help to resupply small dust to the protostellar disc. We also point out the possible implications of this scenario for the location of planetesimal belts inferred in debris discs around main sequence stars, but stress that further dynamical studies are required in order to establish whether the disc retains a memory of the initial site of planetesimal creation. [source] Evolution of the Irrawaddy delta region since 1850THE GEOGRAPHICAL JOURNAL, Issue 2 2010PETER J HEDLEY We present a time series of coastline change for the Irrawaddy delta region of Myanmar using the earliest available navigation chart from 1850, and a set of topographic maps and satellite imagery dating from 1913 to 2006. Despite the large sediment load delivered annually to the gulf by the Irrawaddy and Salween Rivers, the coastline has been largely stable for 156 years, advancing at an average rate of no more than 0.34 km per century since 1925. The long-term average rate of increase in land area across the study area between 1925 and 2006 is 4.2 km2/year, but this masks a period of more rapid accumulation between 1925 and 1989 (8.7 km2/year), followed by a period of net erosion at a rate of 13 km2/year until 2006. Less than 9% of the sediment load delivered to the study region by the Irrawaddy, Salween and Sittoung Rivers has contributed to the observed progradation, with the remainder being exported into the Gulf of Martaban to depths below low tide level, or filling any accommodation space created due to subsidence or sea level rise. In contrast to many deltas worldwide, we suggest that the coastline encompassing the Irrawaddy delta and the Salween River is more or less in equilibrium, and that sediment deposition currently balances subsidence and sea level rise. Myanmar has fewer large dams relative to its Asian neighbours, and the Salween is currently undammed. This is forecast to change in the next 5,10 years with extensive damming projects on the mainstem of the Salween under consideration or construction, and the sediment retention will cause losses in sediment supply to the Gulf of Martaban, and retreat of the delta. This could impact the densely populated delta region and Yangon, and further exacerbate the impacts of extreme events such as Cyclone Nargis in 2008. [source] The galectin family and digestive disease,THE JOURNAL OF PATHOLOGY, Issue 1 2008P Demetter Abstract The soluble-type lectins or galectins constitute a family of proteins defined by shared consensus amino acid sequence and affinity for beta-galactose-containing oligosaccharides. These molecules are widely distributed in the animal kingdom; to date, 15 mammalian galectins have been described but more are likely to be discovered. These proteins are involved in many biological processes including cell,cell and cell,matrix adhesion, growth regulation, signaling, and cytokine secretion. Over the last decade, a vast amount of reports has shown the importance of several galectins in the development and progression of malignancies in the digestive tract, mainly colorectal cancers. More recent data indicate that some of these molecules are also involved in inflammatory bowel diseases. This review focuses on the current knowledge of galectin expression and putative functions in the oesophagus, stomach, small intestine, and colon. It also highlights that the rapid accumulation of research data promises future scenarios in which individual members of the galectin family and/or their ligands will be used as diagnostic and therapeutic modalities for neoplastic as well as inflammatory disorders. However, the concretization of these potential modalities requires substantial improvements in terms of standardization of galectin expression evaluation together with prospective validation of the present data. Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source] The chloroplastic lipocalin AtCHL prevents lipid peroxidation and protects Arabidopsis against oxidative stressTHE PLANT JOURNAL, Issue 4 2009Gabriel Levesque-Tremblay Summary Lipocalins are small ligand-binding proteins with a simple tertiary structure that gives them the ability to bind small, generally hydrophobic, molecules. Recent studies have shown that animal lipocalins play important roles in the regulation of developmental processes and are involved in tolerance to oxidative stress. Plants also possess various types of lipocalins, and bioinformatics analyses have predicted that some lipocalin members may be present in the chloroplast. Here we report the functional characterization of the Arabidopsis thaliana chloroplastic lipocalin AtCHL. Cellular fractionation showed that AtCHL is a thylakoid lumenal protein. Drought, high light, paraquat and abscisic acid treatments induce AtCHL transcript and protein accumulation. Under normal growth conditions, knockout (KO) and over-expressing (OEX) lines do not differ from wild-type plants in terms of phenotype and photosynthetic performance. However, KO plants, which do not accumulate AtCHL, show more damage upon photo-oxidative stress induced by drought, high light or paraquat. In contrast, a high level of AtCHL allows OEX plants to cope better with these stress conditions. When exposed to excess light, KO plants display a rapid accumulation of hydroxy fatty acids relative to the wild-type, whereas the lipid peroxidation level remains very low in OEX plants. The increased lipid peroxidation in KO plants is mediated by singlet oxygen and is not correlated with photo-inhibition of the photosystems. This work provides evidence suggesting that AtCHL is involved in the protection of thylakoidal membrane lipids against reactive oxygen species, especially singlet oxygen, produced in excess light. [source] Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thalianaTHE PLANT JOURNAL, Issue 1 2009Reetta Ahlfors Summary Nitric oxide (NO) is involved together with reactive oxygen species (ROS) in the activation of various stress responses in plants. We have used ozone (O3) as a tool to elicit ROS-activated stress responses, and to activate cell death in plant leaves. Here, we have investigated the roles and interactions of ROS and NO in the induction and regulation of O3 -induced cell death. Treatment with O3 induced a rapid accumulation of NO, which started from guard cells, spread to adjacent epidermal cells and eventually moved to mesophyll cells. During the later time points, NO production coincided with the formation of hypersensitive response (HR)-like lesions. The NO donor sodium nitroprusside (SNP) and O3 individually induced a large set of defence-related genes; however, in a combined treatment SNP attenuated the O3 induction of salicylic acid (SA) biosynthesis and other defence-related genes. Consistent with this, SNP treatment also decreased O3 -induced SA accumulation. The O3 -sensitive mutant rcd1 was found to be an NO overproducer; in contrast, Atnoa1/rif1 (Arabidopsis nitric oxide associated 1/resistant to inhibition by FSM1), a mutant with decreased production of NO, was also O3 sensitive. This, together with experiments combining O3 and the NO donor SNP suggested that NO can modify signalling, hormone biosynthesis and gene expression in plants during O3 exposure, and that a functional NO production is needed for a proper O3 response. In summary, NO is an important signalling molecule in the response to O3. [source] |