Range Extent (range + extent)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Range Extent

  • latitudinal range extent


  • Selected Abstracts


    Performance of Greater Sage-Grouse Models for Conservation Assessment in the Interior Columbia Basin, U.S.A.

    CONSERVATION BIOLOGY, Issue 5 2002
    Michael J. Wisdom
    Consequently, we evaluated the performance of two models designed to assess landscape conditions for Greater Sage-Grouse across 13.6 million ha of sagebrush steppe in the interior Columbia Basin and adjacent portions of the Great Basin of the western United States (referred to as the basin). The first model, the environmental index model, predicted conditions at the scale of the subwatershed (mean size of approximately 7800 ha) based on inputs of habitat density, habitat quality, and effects of human disturbance. Predictions ranged on a continuous scale from 0 for lowest environmental index to 2 for optimal environmental index. The second model, the population outcome model, predicted the composite, range-wide conditions for sage grouse based on the contribution of environmental index values from all subwatersheds and measures of range extent and connectivity. Population outcomes were expressed as five classes (A through E) that represented a gradient from continuous, well-distributed populations (outcome A) to sparse, highly isolated populations with a high likelihood of extirpation (outcome E). To evaluate performance, we predicted environmental index values and population outcome classes in areas currently occupied by sage grouse versus areas where extirpation has occurred. Our a priori expectations were that models should predict substantially worse environmental conditions ( lower environmental index) and a substantially higher probability of extirpation ( lower population outcome class) in extirpated areas. Results for both models met these expectations. For example, a population outcome of class E was predicted for extirpated areas, as opposed to class C for occupied areas. These results suggest that our models provided reliable landscape predictions for the conditions tested. This finding is important for conservation planning in the basin, where the models were used to evaluate management of federal lands for sage grouse. Resumen: Modelos válidos de hábitat y de poblaciones del urogallo (Centrocercus urophasianus) son una necesidad crítica para su manejo debido a la creciente preocupación por la viabilidad de la población. Por lo tanto, evaluamos el funcionamiento de dos modelos diseñados para evaluar las condiciones del paisaje para el urogallo en 13.6 millones de ha de la estepa de artemisa en la Cuenca Columbia Interior y las porciones adyacentes de la Gran Cuenca de los Estados Unidos occidentales (referidos como cuenca). El primer modelo (modelo de índice ambiental) predijo condiciones a escala de la subcuenca (tamaño promedio , 7800 ha) basado en información de la densidad del hábitat, calidad del hábitat y efectos de la perturbación humana. Las predicciones variaron en una escala continua a partir de 0 (el índice ambiental más bajo) a 2 (índice ambiental óptimo). El segundo modelo (modelo del resultado de la población) predijo las condiciones compuestas, de amplio rango, para el urogallo con base en la contribución de los valores de índice ambiental de todas las subcuencas y las medidas de extensión y de conectividad de la pradera. Los resultados de la población fueron expresados en cinco clases (A - E) que representan un gradiente de poblaciones continuas, bien-distribuidas (resultado A) a poblaciones escasas, altamente aisladas con una alta probabilidad de extirpación (resultado E). Para evaluar el funcionamiento, predijimos valores de índice ambiental y resultados de la población en las áreas actualmente ocupadas por urogallos versus áreas donde ha ocurrido la extirpación. Nuestras expectativas a priori eran que los modelos deben predecir condiciones ambientales substancialmente peores (índice ambiental más bajo) y una probabilidad de extirpación sustancialmente mayor (menor resultado de la población) en áreas extirpadas. Los resultados para ambos modelos cumplieron estas expectativas. Por ejemplo, se predijo un resultado de la población de la clase E para áreas extirpadas, en comparación con la clase C para áreas ocupadas. Estos resultados sugieren que nuestros modelos proporcionaron predicciones de paisaje confiables para las condiciones probadas. Este hallazgo es importante para planeación de la conservación de la cuenca, donde los modelos fueron utilizados para evaluar el manejo de terrenos federales para urogallos. [source]


    Latitudinal gradients in diversity: real patterns and random models

    ECOGRAPHY, Issue 3 2001
    Patricia Koleff
    Mid-domain models have been argued to provide a default explanation for the best known spatial pattern in biodiversity, namely the latitudinal gradient in species richness. These models assume no environmental gradients, but merely a random latitudinal association between the size and placement of the geographic ranges of species. A mid-domain peak in richness is generated because when the latitudinal extents of species in a given taxonomic group are bounded to north and south, perhaps by a physical constraint such as a continental edge or perhaps by a climatic constraint such as a critical temperature or precipitation threshold, then the number of ways in which ranges can be distributed changes systematically between the bounds. In addition, such models make predictions about latitudinal variation in the latitudinal extents of the distributions of species, and in beta diversity (the spatial turnover in species identities). Here we test how well five mid-domain models predict observed latitudinal patterns of species richness, latitudinal extent and beta diversity in two groups of birds, parrots and woodpeckers, across the New World. Whilst both groups exhibit clear gradients in richness and beta diversity and the general trend in species richness is acceptably predicted (but not accurately, unless substantial empirical information is assumed), the fit of these models is uniformly poor for beta diversity and latitudinal range extent. This suggests either that, at least for these data, as presently formulated mid-domain models are too simplistic, or that in practice the mid-domain effect is not significant in determining geographical variation in diversity. [source]


    Differential effects of past climate warming on mountain and flatland species distributions: a multispecies North American mammal assessment

    GLOBAL ECOLOGY, Issue 1 2007
    Robert Guralnick
    ABSTRACT Aim, The magnitude of predicted range shifts during climate change is likely to be different for species living in mountainous environments compared with those living in flatland environments. The southern edges of ranges in mountain species may not shift northwards during warming as populations instead migrate up available elevational gradients; overall latitudinal range appears therefore to expand. In contrast, flatland species should shift range centroids northwards but not expand or contract their latitudinal range extent. These hypotheses were tested utilizing Late Pleistocene and modern occurrence data. Location, North America. Methods, The location and elevation of modern and Late Pleistocene species occurrences were collected from data bases for 26 species living in mountain or flatland environments. Regressions of elevation change over latitude, and southern and northern range edges were calculated for each species for modern and fossil data sets. A combination of regressions and anovas were used to test whether flatland species shift range edges and latitudinal extents more than mountain species do. Results, Flatland species had significantly larger northward shifts at southern range edges than did mountain-dwelling species from the Late Pleistocene to the present. There was also a significant negative correlation between the amount of change in the latitude of the southern edge of the range and the amount of elevational shifting from the Late Pleistocene to the present. Although significant, only c. 25% of the variance could be explained by this relationship. In addition, there was a weak indication that overall range expansion was less in flatland-dwelling than in mountain-dwelling species. Main conclusions, The approach used here was to examine past species' range responses to warming that occurred after the last ice ages as a means to better predict potential future responses to continued warming. The results confirm predictions of differential southern edge and overall range shifts for species occupying mountain and flatland regions in North America. The findings may be broadly applicable in other regions, thus allowing better modelling of future range and distribution related responses. [source]


    What determines a species' geographical range?

    JOURNAL OF ANIMAL ECOLOGY, Issue 1 2010
    Thermal biology, latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae)
    Summary 1.,The geographical range sizes of individual species vary considerably in extent, although the factors underlying this variation remain poorly understood, and could include a number of ecological and evolutionary processes. A favoured explanation for range size variation is that this result from differences in fundamental niche breadths, suggesting a key role for physiology in determining range size, although to date empirical tests of these ideas remain limited. 2.,Here we explore relationships between thermal physiology and biogeography, whilst controlling for possible differences in dispersal ability and phylogenetic relatedness, across 14 ecologically similar congeners which differ in geographical range extent; European diving beetles of the genus Deronectes Sharp (Coleoptera, Dytiscidae). Absolute upper and lower temperature tolerance and acclimatory abilities are determined for populations of each species, following acclimation in the laboratory. 3.,Absolute thermal tolerance range is the best predictor of both species' latitudinal range extent and position, differences in dispersal ability (based on wing size) apparently being less important in this group. In addition, species' northern and southern range limits are related to their tolerance of low and high temperatures respectively. In all cases, absolute temperature tolerances, rather than acclimatory abilities are the best predictors of range parameters, whilst the use of independent contrasts suggested that species' thermal acclimation abilities may also relate to biogeography, although increased acclimatory ability does not appear to be associated with increased range size. 4.,Our study is the first to provide empirical support for a relationship between thermal physiology and range size variation in widespread and restricted species, conducted using the same experimental design, within a phylogenetically and ecologically controlled framework. [source]


    Thermal tolerance and geographical range size in the Agabus brunneus group of European diving beetles (Coleoptera: Dytiscidae)

    JOURNAL OF BIOGEOGRAPHY, Issue 2 2008
    P. Calosi
    Abstract Aim, Within clades, most taxa are rare, whilst few are common, a general pattern for which the causes remain poorly understood. Here we investigate the relationship between thermal performance (tolerance and acclimation ability) and the size of a species' geographical range for an assemblage of four ecologically similar European diving beetles (the Agabus brunneus group) to examine whether thermal physiology relates to latitudinal range extent, and whether Brown's hypothesis and the environmental variability hypothesis apply to these taxa. Location, Europe. Methods, In order to determine the species tolerances to either low or high temperatures we measured the lethal thermal limits of adults, previously acclimated at one of two temperatures, by means of thermal ramping experiments (± 1°C min,1). These measures of upper and lower thermal tolerances (UTT and LTT respectively) were then used to estimate each species' thermal tolerance range, as total thermal tolerance polygons and marginal UTT and LTT thermal polygons. Results, Overall, widespread species have higher UTTs and lower LTTs than restricted ones. Mean upper lethal limits of the Agabus brunneus group (43 to 46°C), are similar to those of insects living at similar latitudes, whilst mean lower lethal limits (,6 to ,9°C) are relatively high, suggesting that this group is not particularly cold-hardy compared with other mid-temperate-latitude insects. Widespread species possess the largest thermal tolerance ranges and have a relatively symmetrical tolerance to both high and low temperatures, when compared with range-restricted relatives. Over the temperature range employed, adults did not acclimate to either high or low temperatures, contrasting with many insect groups, and suggesting that physiological plasticity has a limited role in shaping distribution. Main conclusions, Absolute thermal niche appears to be a good predictor of latitudinal range, supporting both Brown's hypothesis and the environmental variability hypothesis. Restricted-range species may be more susceptible to the direct effect of climate change than widespread species, notwithstanding the possibility that even ,thermally-hardy', widespread species may be influenced by the indirect effects of climate change such as reduction in habitat availability in Mediterranean areas. [source]


    Origin, diversification and conservation status of talus snails in the Pinaleño Mountains: a conservation biogeographic study

    ANIMAL CONSERVATION, Issue 3 2010
    K. F. Weaver
    Abstract For many taxa, determining conservation status and priority is impeded by lack of adequate taxonomic and range data. For these problematic groups, we propose combining molecular techniques with careful geographic sampling to evaluate the validity, extent and phylogenetic relatedness of the proposed units of diversity. We employed such a strategy to document monophyletic lineages, range extents and phylogenetic relatedness for talus snails (genus Sonorella) in the Pinaleño Mountains of Arizona, an isolated range that has the most vertical relief of any of the sky islands in Arizona. Three of the four species found in the Pinaleño Mountains have been considered candidate species for protection under the Endangered Species Act. Further, one of these taxa, Sonorella macrophallus, is of particular concern and was protected under an USFS conservation agreement until 2004, due to its presumed endemicity to a narrow portion of one canyon. We collected a large dataset of 12S and COI mitochondrial DNA, and subsamples of reproductive morphology from specimens collected throughout the Pinaleños and from adjacent ranges (e.g. the Huachucas, Chiricahuas and Santa Catalinas). We generated a phylogeny based on the mitochondrial data, and matched clades with named species utilizing reproductive morphology. Our results show that both S. macrophallus and Sonorella imitator are relatively widespread across the Pinaleños while Sonorella grahamensis and Sonorella christenseni are restricted to very small areas. These results dramatically change our previous knowledge about range extents, especially for S. macrophallus. Given these results, land managers may need to reassess the status of all four Sonorella species. Finally, all Sonorella species from the Pinaleños are more closely related to each other than to other taxa on other ranges. This result strongly suggests that diversification of the four Sonorella species in the Pinaleños occurred in situ. [source]