Radiosonde Observations (radiosonde + observation)

Distribution by Scientific Domains


Selected Abstracts


Changes in Antarctic Peninsula tropospheric temperatures from 1956 to 1999: a synthesis of observations and reanalysis data

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 3 2002
Gareth J. Marshall
Abstract The surface warming at Faraday station in the western Antarctic Peninsula is one of the largest observed anywhere over the last 50 years, yet the physical mechanisms driving this climate change are poorly understood. In this paper we synthesize radiosonde temperature observations from three Peninsula stations and NCEP,NCAR reanalysis data in order to examine contemporaneous regional tropospheric temperature trends (1956,99), which may in turn help us to understand better the causes of the surface warming. The reanalysis data are utilized in two ways: (i) to provide long-term mean monthly offsets between Faraday, which ceased radiosonde observations in 1982, and two other stations in the region having more recent data, Bellingshausen and Marambio, in order to create post-1982 simulated Faraday data; (ii) after having any spurious trends and bias removed, to provide directly a monthly value for Faraday when no equivalent value from regional observations is available. Using available months of overlap, a comparison between temperature observations and simulated data suggests that the latter are a reasonable facsimile of the former. The synthesized time-series of tropospheric temperatures reveal a statistically significant mean annual tropospheric (850,300 hPa) warming above Faraday between 1956 and 1999 of ,0.027±0.022 °C year,1. Winter and summer both show a warming trend, with significance varying with height and season. Annually, the mean tropospheric warming is half that at the surface, Unlike the surface warming, the calculated tropospheric warming trend is no greater than observed at other Antarctic stations, and indeed is not significantly greater than the background global warming trend for most of the period examined. Thus, we cannot dismiss the possibility that the Peninsula surface warming may simply be a response to a global warming magnified by the observed strong regional feedback between sea-ice extent and surface temperature during winter. Copyright © 2002 Royal Meteorological Society. [source]


4D-Var assimilation of MERIS total column water-vapour retrievals over land

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 644 2009
Peter Bauer
Abstract Experiments with the active assimilation of total column water-vapour retrievals from Envisat MERIS observations have been performed at the European Centre for Medium-Range Weather Forecasts (ECMWF), focusing on the summer 2006 African Monsoon Multidisciplinary Analysis (AMMA) field campaign period. A mechanism for data quality control, observation error definition and variational bias correction has been developed so that the data can be safely treated within 4D-Var, like other observations that are currently assimilated in the operational system. While data density is limited due to the restriction to daylight and cloud-free conditions, a systematic impact on mean moisture analysis was found, with distinct regional and seasonal features. The impact can last 1--2 days into the forecast but has little effect on forecast accuracy in terms of both moisture and dynamics. This is mainly explained by the weak dynamic activity in the areas of largest data impact. Analysis and short-range forecast evaluation with radiosonde observations revealed a strong dependence on radiosonde type. Compared with Vaisala RS92 observations, the addition of MERIS total column water-vapour observations produced neutral to positive impact, while contradictory results were obtained when all radiosonde types were used in generating the statistics. This highlights the issue of radiosonde moisture biases and the importance of sonde humidity bias correction in numerical weather prediction (NWP). Copyright © 2009 Royal Meteorological Society [source]


The potential of variational retrieval of temperature and humidity profiles from Meteosat Second Generation observations

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 638 2009
F. Di Giuseppe
Abstract The quality of temperature and humidity retrievals from the infrared Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensors on the geostationary Meteosat Second Generation (MSG) satellites is assessed by means of a one-dimensional variational algorithm. The study is performed with the aim of improving the spatial and temporal resolution of available observations to feed analysis systems designed for high-resolution regional-scale numerical weather prediction (NWP) models. The non-hydrostatic forecast model COSMO in the ARPA-SIMC operational configuration is used to provide background fields. Only clear-sky observations over sea are processed. An optimized one-dimensional variational set-up comprised of two water-vapour and three window channels is selected. It maximizes the reduction of errors in the model backgrounds while ensuring ease of operational implementation through accurate bias correction procedures and correct radiative transfer simulations. The 1Dvar retrieval quality is first quantified in relative terms, employing statistics to estimate the reduction in the background model errors. Additionally the absolute retrieval accuracy is assessed by comparing the analysis with independent radiosonde observations. The inclusion of satellite data brings a substantial reduction in the warm and dry biases present in the forecast model. Moreover it is shown that the use of the retrieved profiles generated by the 1Dvar in the COSMO nudging scheme can locally reduce forecast errors. Copyright © 2009 Royal Meteorological Society [source]


Model studies of the interannual variability of the northern-hemisphere stratospheric winter circulation: The role of the quasi-biennial oscillation

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 574 2001
L. J. Gray
Abstract A series of experiments are described that examine the sensitivity of the northern-hemisphere winter evolution to the equatorial quasi-biennial oscillation (QBO). The prime tool for the experiments is a stratosphere-mesosphere model. The model is integrated over many years with the modelled equatorial winds relaxed towards observed values in order to simulate a realistic QBO. In experiment A the equatorial winds are relaxed towards Singapore radiosonde observations in the height region 16-32 km. In contrast to previous modelling studies, the Holton-Tan relationship (warm/cold winters associated with easterly/westerly QBO winds in the lower stratosphere) is absent. However, in a second experiment (run B) in which the equatorial winds are relaxed towards rocketsonde data over the extended height range 16-58 km, a realistic Holton-Tan relationship is reproduced. A series of further studies are described that explore in more detail the sensitivity to various equatorial height regions and to the bottom-boundary forcing. The experiments suggest that the evolution of the northern-hemisphere winter circulation is sensitive to equatorial winds throughout the whole depth of the stratosphere and not just to the lower-stratospheric wind direction as previously assumed. [source]


Use of GPS/MET refraction angles in three-dimensional variational analysis

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 570 2000
X. Zou
Abstract The Spectral Statistical Interpolation (SSI) analysis system of the National Centers for Environmental Prediction (NCEP) is modified to include GPS/MET data (meteorological data from the Global Positioning Satellite system) using a GPS ray-tracing operator. The new system is tested by incorporating 30 actual GPS/MET observations of refraction angles obtained during the GPS/MET experiment. This is the first time that real radio occupation refraction angles and refractivities have been incorporated into a three-dimensional variational analysis system. We examine the magnitude and the vertical distribution of the analysis adjustments that result from using refraction-angle observations in the NCEP SSI analysis system. The average magnitudes of the adjustments in the temperature and specific-humidity fields are approximately 0.4 degC and 0.6 g kg,1, respectively. Individual changes can be as large as 4 degC and 4g kg,1, respectively. The greatest adjustments to the temperature occur in the middle and upper troposphere and stratosphere, while the major changes in specific humidity occur in the lower troposphere. An assessment of the impact of the GPS/MET observations on the analysis, verified by conventional (mostly radiosonde) data, is difficult because of the small number of GPS/MET data used. Nevertheless, it is found that, even over data-rich regions (regions containing many radiosonde observations), and even when the verification data were the radiosonde data themselves, the use of GPS/MET refraction angles makes a slight improvement, overall, to the analysed temperatures and winds. The impact on the water-vapour analyses, again as measured against radiosonde data, is mixed, with improvements shown in some layers and degradation in others. Compared with the background field, the use of refraction angles from one occultation results in an analysis whose simulated refraction angles are much closer to the withheld GPS/MET refraction angles at the two nearby occultation locations, and whose temperature and moisture profiles are also closer to those resulting from the direct assimilation of the two withheld occultations. Although the forward model used in this study, with the ray tracing being carried out in a two-dimensional plane, is much cheaper than a more accurate three-dimensional forward model, it is still quite expensive. In order to further reduce the computational requirement for the assimilation of GPS/MET data, we test a scheme in which the GPS/MET-retrieved refractivities (instead of refraction angles) are used above a selected height for each occupation. These heights are determined objectively based on the departures from spherical symmetry of the model field. It is shown that the mixed use of GPS/MET refraction angles and refractivities produces an analysis result similar to the one using refraction angles alone, while the computational cost is reduced by more than 30%. [source]