Radio-Linked Interferometer Network (Radio-Link + interferometer_network)

Distribution by Scientific Domains

Kinds of Radio-Linked Interferometer Network

  • multi-element Radio-Link interferometer network


  • Selected Abstracts


    Discovery of large-scale methanol and hydroxyl maser filaments in W3(OH)

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
    L. Harvey-Smith
    ABSTRACT Images of the 6.7-GHz methanol maser emission from W3(OH) made at 50- and 100-mas angular resolution with the Multi-Element Radio-Linked Interferometer Network (MERLIN) are presented. The masers lie across the western face of the ultracompact H ii region in extended filaments which may trace large-scale shocks. There is a complex interrelation between the 6.7-GHz methanol masers and hydroxyl (OH) masers at 1.7 and 4.7 GHz. Together the two species trace an extended filamentary structure that stretches at least 3100 au across the face of the ultracompact H ii region. The dominant 6.7-GHz methanol emission coincides with the radio continuum peak and is populated by masers with broad spectral lines. The 6.7-GHz methanol emission is elongated at position angle 50° with a strong velocity gradient, and bears many similarities to the methanol maser disc structure reported in NGC 7538. It is surrounded by arcs of ground state OH masers at 1.7 GHz and highly excited OH masers at 13.44 GHz, some of which have the brightest methanol masers at their focus. We suggest that this region hosts the excitation centre for the ultracompact H ii region. [source]


    OH megamasers, starburst and AGN activity in Markarian 231

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2005
    A. M. S. Richards
    ABSTRACT We present Multi-Element Radio-Linked Interferometer Network (MERLIN) observations of OH maser and radio continuum emission within a few hundred pc of the core of the ultraluminous infrared galaxy (ULIRG) Markarian 231. This is the only known OH megamaser galaxy classed as a Seyfert 1. Maser emission is identified with the 1665- and 1667-MHz transitions over a velocity extent of 720 km s,1. Both lines show a similar position,velocity structure including a gradient of 1.7 km s,1 pc,1 from NW to SE along the 420-pc major axis. The (unresolved) inner few tens of pc possess a much steeper velocity gradient. The maser distribution is modelled as a torus rotating about an axis inclined at ,45° to the plane of the sky. We estimate the enclosed mass density to be 320 ± 90 M, pc,3 in a flattened distribution. This includes a central unresolved mass of ,8 × 106 M,. All the maser emission is projected against a region with a radio continuum brightness temperature ,105 K, giving a maser gain of ,2.2. The 1667:1665 MHz line ratio is close to 1.8 (the value predicted for thermal emission) consistent with radiatively pumped, unsaturated masers. This behaviour and the kinematics of the torus suggest that the size of individual masing regions is in the range 0.25,4 pc with a covering factor close to unity. There are no very bright compact masers, in contrast to galaxies such as the Seyfert 2 Markarian 273, where the masing torus is viewed nearer edge-on. The comparatively modest maser amplification seen from Markarian 231 is consistent with its classification in the unification scheme for Seyfert galaxies. Most of the radio continuum emission on 50,500 pc scales is probably of starburst origin but the compact peak is 0.4 per cent polarized by a magnetic field running north,south, similar to the jet direction on these scales. There is no close correlation between maser and continuum intensity, suggesting that much of the radio continuum must originate in the foreground and indeed the relative continuum brightness is slightly greater in the direction of the approaching jet. Comparisons with other data show that the jet changes direction close the nucleus and suggest that the sub-kpc disc hosting the masers and starburst activity is severely warped. [source]


    The association of OH and methanol masers in W3(OH)

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2005
    S. Etoka
    ABSTRACT We present single-baseline Multi-Element Radio-Linked Interferometer Network (MERLIN) measurements of excited OH 6.0-GHz masers and methanol 6.7-GHz masers for the source W3(OH). These allow us to compare the positions of individual maser spots of these two species to ,15 mas accuracy for the first time, and to compare these with previously published positions of ground-state OH masers near 1.7 GHz and excited-state OH masers near 4.7 GHz. There is a strong association between OH 6035-MHz and 1665-MHz masers. OH and methanol have very similar distributions, but associations of individual masers are relatively rare: most methanol 6.7-GHz masers are within 100 mas of OH 6.0-GHz masers, but only four methanol masers are within 15 mas of an OH 6.0-GHz maser. There are no correspondences of either species with excited OH 4.7-GHz masers. Zeeman splitting of the 6.0-GHz OH lines indicates an ordered magnetic field ranging from 3.2 to 14.4 mG. The magnetic fields estimated from co-propagating masers such as 6035 and 1665 MHz are generally in good agreement with each other. [source]


    H i kinematics in a massive spiral galaxy at z= 0.89

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY: LETTERS (ELECTRONIC), Issue 1 2005
    L. V. E. Koopmans
    ABSTRACT We present a kinematic model of the neutral hydrogen in the spiral galaxy of the lens system PKS 1830,211, based on a Multi-Element Radio-Linked Interferometer Network (MERLIN) 1.4-GHz radio map and the integrated and redshifted 21-cm hydrogen absorption-line profile as measured with the Westerbork Synthesis Radio Telescope (WSRT). Degeneracies in the models do not allow a unique determination of the kinematic centre, and forthcoming deeper Hubble Space Telescope observations with the Advanced Camera for Surveys (ACS) are required to break this degeneracy. Even so, we measure the inclination of the hydrogen disc: i= 17°,32°, indicating a close to face-on spiral galaxy. The optical depth increases with radius over the extent of the Einstein ring, suggesting H i depletion towards the lens centre. The latter could be due to star formation or conversion of H i into molecular hydrogen because of a higher metalicity/dust content in the galaxy centre. The neutral hydrogen optical depth gives NH I= 2 × 1021 cm,2 at r= 5.0 h,170 kpc in the disc (Ts= 100 K), comparable to local spiral galaxies. [source]