Radiographic Observations (radiographic + observation)

Distribution by Scientific Domains


Selected Abstracts


Long-Term Effect of Incadronate Disodium (YM-175) on Fracture Healing of Femoral Shaft in Growing Rats

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 3 2001
Chaoyang Li
Abstract The aim of this study was to investigate the long-term effect of incadronate on fracture healing of the femoral shaft in rats. Female Sprague-Dawley 8-week-old rats were injected subcutaneously (sc) with either vehicle (V group) or two doses of incadronate (10 ,g/kg and 100 ,g/kg) three times a week for 2 weeks. Right femoral diaphysis was then fractured and fixed with intramedullary stainless wire. Just after fracture, incadronate treatment was stopped in pretreatment groups (P groups: P-10 and P-100) or continued in continuous treatment groups (C groups: C-10 and C-100). All rats were killed at 25 weeks or 49 weeks after surgery. Fractured femur was evaluated radiologically and mechanically and then stained in Villanueva bone stain and embedded in methyl methacrylate. Undecalcified cross-sections from the fracture area were evaluated microradiologically and histomorphometrically. Radiographic observation showed that the fracture line disappeared in all groups. Cross-sectional area in the C-100 group was the biggest among all groups and in the C-10 group was larger than that in the V group at 25 weeks. Histological and histomorphometric observations showed that the process of fracture healing was delayed under continuous treatment with incadronate as evidenced by the delay of both lamellar cortical shell formation and resolution of original cortex in C groups. Percent linear labeling perimeter, mineral apposition rate (MAR), and bone formation rate (BFR) in C groups significantly decreased compared with the other groups, indicating that the callus remodeling was suppressed under continuous treatment, especially with a high dose. Mechanical study showed that the stiffness and ultimate load of the fractured femur in the C 100 group were the highest among all groups at both 25 weeks and 49 weeks. In conclusion, this study showed that long-term continuous treatment with incadronate delayed the process of fracture healing of femur in rats, especially under high dose but it did not impair the recovery of mechanical integrity of the fracture. [source]


Bone formation at rhBMP-2-coated titanium implants in the rat ectopic model

JOURNAL OF CLINICAL PERIODONTOLOGY, Issue 5 2007
Jan Hall
Abstract Background: The objective of this study was to evaluate local bone formation at titanium porous oxide (TPO) implant surfaces adsorbed with recombinant human bone morphogenetic protein-2 (rhBMP-2). Methods: In vitro studies were used to estimate the kinetics of I125 -labeled rhBMP-2 released from TPO surfaces with narrow (N) or open (O) pores. Machined/turned titanium (MT) surfaces served as control. The rat ectopic model was used to assess local bone formation. Briefly, TPO-N, TPO-O, and MT disc implants adsorbed with 5, 10, or 20 ,g rhBMP-2, respectively, were implanted subcutaneously into the ventral thoracic region in 5-week-old male Long Evans rats. The animals were euthanized at day 14 postsurgery when implants with surrounding tissues were removed, radiographed, and gross observations recorded. The specimens were processed for histologic evaluation using conventional cut-and-grind techniques. TPO implants without rhBMP-2 included in a preliminary evaluation revealed no evidence of bone formation, tissue encapsulation, or vascularity, thus such controls were not further used. Results: TPO and MT implant surfaces adsorbed with 5 ,g rhBMP-2 retained 2.3,5.4% rhBMP-2 following immersion and rinse in buffer, and 1.1,2.2% rhBMP-2 following repeated immersions and rinses over 27 days. TPO implants retained the most rhBMP-2 and MT implants retained the least. Explants revealed increased hard tissue formation, tissue encapsulation, and vascularity at TPO compared with MT implants. Radiographic observations were consistent with the explant observations. The histologic analysis showed greater amounts of bone formation, osteoblastic cells, osteoid, marrow, tissue encapsulation, vascularity, and bone voids for implants adsorbed with 10 and 20 ,g rhBMP-2, and for TPO implants at the 5- ,g rhBMP-2 dose. The histometric analysis revealed significantly greater bone formation at TPO-O than at MT implants at the 5- ,g rhBMP-2 dose. All surfaces showed significant bone formation at the 10- and 20- ,g dose. Conclusions: rhBMP-2 adsorbed onto TPO implant surfaces executes an osteoinductive effect including bone contacting the implant surface. This effect is surface- and dose-dependent; the TPO-O surface yielding the most bone at the low discriminating rhBMP-2 dose. [source]


Anticipating bipedalism: trabecular organization in the newborn ilium

JOURNAL OF ANATOMY, Issue 6 2009
Craig A. Cunningham
Abstract Trabecular bone structural organization is considered to be predominantly influenced by localized temporal forces which act to maintain and remodel the trabecular architecture into a biomechanically optimal configuration. In the adult pelvis, the most significant remodelling forces are believed to be those generated during bipedal locomotion. However, during the fetal and neonatal period the pelvic complex is non-weight bearing and, as such, structural organization of iliac trabecular bone cannot reflect direct stance-related forces. In this study, micro-computed tomography scans from 28 neonatal ilia were analysed, using a whole bone approach, to investigate the trabecular characteristics present within specific volumes of interest relevant to density gradients highlighted in a previous radiographic study. Analysis of the structural indices bone volume fraction, trabecular thickness, trabecular spacing and trabecular number was carried out to quantitatively investigate structural composition. Quantification of the neonatal trabecular structure reinforced radiographic observations by highlighting regions of significant architectural form which grossly parallel architectural differences in the adult pattern but which have previously been attributed to stance-related forces. It is suggested that the seemingly organized rudimentary scaffold observed in the neonatal ilium may be attributable to other non-weight bearing anatomical interactions or even to a predetermined genetic blueprint. It must also be postulated that whilst the observed patterning may be indicative of a predetermined inherent template, early non-weight bearing and late stance-related locomotive influences may subsequently be superimposed upon this scaffolding and perhaps reinforced and likely remodelled at a later age. Ultimately, the analysis of this fundamental primary pattern has core implications for understanding the earliest changes in pelvic trabecular architecture and provides a baseline insight into future ontogenetic development and bipedal capabilities. [source]


Alveolar ridge augmentation using implants coated with recombinant human bone morphogenetic protein-7 (rhBMP-7/rhOP-1): radiographic observations

JOURNAL OF CLINICAL PERIODONTOLOGY, Issue 10 2008
Knut N. Leknes
Abstract Aim: The objective of this study was to radiographically evaluate the potential of a purpose-designed titanium porous-oxide implant surface coated with recombinant human bone morphogenetic protein-7 (rhBMP-7), also known as recombinant human osteogenic protein-1 (rhOP-1), to stimulate alveolar ridge augmentation. Material and Methods: Six young-adult Hound Labrador mongrel dogs were used. Three 10 mm titanium oral implants per jaw quadrant were placed 5 mm into the alveolar ridge in the posterior mandible following surgical extraction of the pre-molar teeth and reduction of the alveolar ridge leaving 5 mm of the implants in a supra-alveolar position. The implants had been coated with rhBMP-7 at 1.5 or 3.0 mg/ml and were randomized to contralateral jaw quadrants using a split-mouth design. The mucoperiosteal flaps were advanced, adapted, and sutured to submerge the implants. Radiographic registrations were made immediately post-surgery (baseline), and at weeks 4 and 8 (end of study). Results: rhBMP-7-coated implants exhibited robust radiographic bone formation. At 8 weeks, bone formation averaged 4.4 and 4.2 mm for implants coated with rhBMP-7 at 1.5 and 3.0 mg/ml, respectively. There were no significant differences between the rhBMP-7 concentrations at any observation interval. A majority of the implant sites showed voids within the newly formed bone at week 4 that generally resolved by week 8. The newly formed bone assumed characteristics of the resident bone. Conclusions: The titanium porous-oxide implant surface serves as an effective carrier for rhBMP-7 showing a clinically significant potential to stimulate local bone formation. [source]