Radiation Model (radiation + model)

Distribution by Scientific Domains


Selected Abstracts


Radiation model of a TiO2 -coated, quartz wool, packed-bed photocatalytic reactor

AICHE JOURNAL, Issue 4 2010
G. E. Imoberdorf
Abstract The radiation field of a packed-bed photocatalytic reactor filled with quartz wool coated with titanium dioxide was modeled using the Monte Carlo technique and the following information: the radiation flux emitted by the lamps, the diameter size distribution of the quartz fiber cloth, the mass of quartz fibers and of TiO2 that was immobilized on the fiber surface as well as the refractive index, and the spectral absorption coefficient of the materials of the system. Modeling predictions were validated with radiometer measurements of the transmitted radiation through the reactor, the root mean square error being <9.7%. Finally, by means of a parametric study, the validated model was used to analyze the effect of the design variables, such as the radii of the quartz fibers, thickness of the TiO2 coatings, and amount of TiO2 -coated quartz wool, on the distribution and nonuniformity of the radiative energy distribution inside the reactor. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source]


Electroencephalographic Characterization of an Adult Rat Model of Radiation-Induced Cortical Dysplasia

EPILEPSIA, Issue 10 2001
Shinji Kondo
Summary: ,Purpose: Cortical dysplasia (CD) is a frequent cause of medically intractable focal epilepsy. The mechanisms of CD-induced epileptogenicity remain unknown. The difficulty in obtaining and testing human tissue warrants the identification and characterization of animal model(s) of CD that share most of the clinical, electroencephalographic (EEG), and histopathologic characteristics of human CD. In this study, we report on the in vivo EEG characterization of the radiation-induced model of CD. Methods: Timed-pregnant Sprague,Dawley rats were irradiated on E17 using a single dose of 145 cGy or left untreated. Their litters were identified and implanted with bifrontal epidural and hippocampal depth electrodes for prolonged continuous EEG recordings. After prolonged EEG monitoring, animals were killed and their brains sectioned and stained for histologic studies. Results: In utero,irradiated rats showed frequent spontaneous interictal epileptiform spikes and spontaneous seizures arising independently from the hippocampal or the frontal neocortical structures. No epileptiform or seizure activities were recorded from age-matched control rats. Histologic studies showed the presence of multiple cortical areas of neuronal clustering and disorganization. Moreover, pyramidal cell dispersion was seen in the CA1>CA3 areas of the hippocampal formations. Conclusions: Our results further characterize the in vivo EEG characteristics of the in utero radiation model of CD using long-term EEG monitoring. This model may be used to study the molecular and cellular changes in epileptogenic CD and to test the efficacy of newer antiepileptic medications. [source]


Development of a finite element radiation model applied to two-dimensional participating media

HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 6 2005
Hong Qi
Abstract A finite element method (FEM) for radiative heat transfer has been developed and it is applied to 2D problems with unstructured meshes. The present work provides a solution for temperature distribution in a rectangular enclosure with black or gray walls containing an absorbing, emitting, isotropically scattering medium. Compared with the results available from Monte Carlo simulation and finite volume method (FVM), the present FEM can predict the radiative heat transfer accurately. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(6): 386,395, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20076 [source]


Above-stream microclimate and stream surface energy exchanges in a wildfire-disturbed riparian zone

HYDROLOGICAL PROCESSES, Issue 17 2010
J. A. Leach
Abstract Stream temperature and riparian microclimate were characterized for a 1·5 km wildfire-disturbed reach of Fishtrap Creek, located north of Kamloops, British Columbia. A deterministic net radiation model was developed using hemispherical canopy images coupled with on-site microclimate measurements. Modelled net radiation agreed reasonably with measured net radiation. Air temperature and humidity measured at two locations above the stream, separated by 900 m, were generally similar, whereas wind speed was poorly correlated between the two sites. Modelled net radiation varied considerably along the reach, and measurements at a single location did not provide a reliable estimate of the modelled reach average. During summer, net radiation dominated the surface heat exchanges, particularly because the sensible and latent heat fluxes were normally of opposite sign and thus tended to cancel each other. All surface heat fluxes shifted to negative values in autumn and were of similar magnitude through winter. In March, net radiation became positive, but heat gains were cancelled by sensible and latent heat fluxes, which remained negative. A modelling exercise using three canopy cover scenarios (current, simulated pre-wildfire and simulated complete vegetation removal) showed that net radiation under the standing dead trees was double that modelled for the pre-fire canopy cover. However, post-disturbance standing dead trees reduce daytime net radiation reaching the stream surface by one-third compared with complete vegetation removal. The results of this study have highlighted the need to account for reach-scale spatial variability of energy exchange processes, especially net radiation, when modelling stream energy budgets. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Modelling radiation and moisture content in fire spread

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 9 2007
L. Ferragut
Abstract A numerical method is developed for fire spread simulation modelling. The model is a two-dimensional one which takes into account moisture content and radiation. We consider the combustion of a porous solid, where a simplified energy conservation equation is applied. The effect of the vegetation moisture and endothermic pyrolysis is incorporated in the model by means of a multivalued function representing the enthalpy. Some of the three-dimensional effects are incorporated in the model, i.e. heat losses in the vertical direction and non-local radiation from the flame above the vegetal layer. Also the radiation model allows to cope with wind and slope effects. The approximate solution is obtained using a finite element method. A semi-implicit Euler algorithm in time is applied. The resolution of the multivalued operator is done using the Yosida approximation of a perturbed multivalued operator. The characteristic method combined with a discrete ordinate method is used to solve the radiation equation. Finally, several representative examples are solved and compared with experimental data. Copyright © 2006 John Wiley & Sons, Ltd. [source]


An Euler system source term that develops prototype Z-pinch implosions intended for the evaluation of shock-hydro methods

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 7 2009
J. W. Banks
Abstract In this paper, a phenomenological model for a magnetic drive source term for the momentum and total energy equations of the Euler system is described. This body force term is designed to produce a Z-pinch like implosion that can be used in the development and evaluation of shock-hydrodynamics algorithms that are intended to be used in Z-pinch simulations. The model uses a J × B Lorentz force, motivated by a 0-D analysis of a thin shell (or liner implosion), as a source term in the equations and allows for arbitrary current drives to be simulated. An extension that would include the multi-physics aspects of a proposed combined radiation hydrodynamics (rad-hydro) capability is also discussed. The specific class of prototype problems that are developed is intended to illustrate aspects of liner implosions into a near vacuum and with idealized pre-fill plasma effects. In this work, a high-resolution flux-corrected-transport method implemented on structured overlapping meshes is used to demonstrate the application of such a model to these idealized shock-hydrodynamic studies. The presented results include an asymptotic solution based on a limiting-case thin-shell analytical approximation in both (x, y) and (r, z). Additionally, a set of more realistic implosion problems that include density profiles approximating plasma pre-fill and a set of perturbed liner geometries that excite a hydro-magnetic like Rayleigh,Taylor instability in the implosion dynamics are demonstrated. Finally, as a demonstration of including and evaluating multiphysics effects in the Euler system, a simple radiation model is included and self-convergence results for two types of (r, z) implosions are presented. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Monte Carlo model of UV-radiation interaction with TiO2 -coated spheres

AICHE JOURNAL, Issue 10 2007
Gustavo E. Imoberdorf
Abstract Photocatalysis is one of the advanced oxidation techniques that are being studied for the treatment of polluted air and water from different sources. From a kinetic point of view, photocatalytic reaction rates are strongly dependent not only on the reactant and product concentrations, but also on the rate of photon absorption. Unfortunately, the local rate of photon absorption is usually difficult to evaluate because of (i) the inherent complexity of the system and (ii) the lack of data concerning the photocatalyst optical properties. The final objective of this project is focused on the development of a complete model of the radiation field; the bed structure, and the flow pattern to describe the operation of a fixed bed photocatalytic reactor. In this article, the interaction between radiative energy and TiO2 -coated fused-silica sphere beds was studied. The proposed model was built applying the Monte Carlo method, taking into account the complex reflection/refraction/absorption interactions between radiation and the packed bed. To obtain experimental measurements, an ad hoc device was designed and built. This device allows us to validate the proposed radiation model, and to obtain the optical parameters of the composite photocatalyst, i.e., the refractive index and the surface rough index of the fused-silica spheres, as well as the refractive index and the optical thickness of the TiO2 films. © 2007 American Institute of Chemical Engineers AIChE J, 2007 [source]


Numerical simulation of flow and heat transfer in connection of gasifier to the radiant syngas cooler

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2009
Jianjun Ni
Abstract The connection of gasifier to the radiant syngas cooler has been regarded as a key technology for heat recovery system. Multiphase flow and heat transfer processes presented in this work considers particle deposition and radiation model to mixture of non-gray gas with particles. An axisymmetric simulation of the multiphase flow in an industrial scale connection is performed. The standard k -, model, Renormalization group (RNG) k -, model and Realizable k -, model turbulence model are proposed. The particle motion is modeled by discrete random walk model. The discrete ordinates model (DOM), P-1 and discrete transfer model (DTRM) are used to model the radiative heat transfer. The effect of particles on the radiative heat transfer was taken into account when the DOM and P-1 model were used. The absorption coefficient of the gas mixture is calculated by means of a weighted-sum-of-gray-gas (WSGG) model. The results with the DOM and P-1 model are very similar and close to practical condition. A large number of particles are deposited on the cone of gasifier which is the top of connection. Maximum temperature difference is approximate 7 K when the cooling tube heights change from 0.5 m to 1.5 m. The temperature inside has a linear relationship with operating temperature. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


Do canal-cutting behaviours facilitate host-range expansion by insect herbivores?

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2009
DAVID E. DUSSOURD
According to the escalation,radiation model of co-evolution, insect herbivores that acquire the ability to circumvent a plant defence enter a new adaptive zone and increase in species. How herbivore counter-adaptations to plant defences might lead to speciation is poorly understood. Studies of nymphalid butterflies suggest that the evolution of a broadened host range may be a critical step. This paper examines if leaf-feeding insects capable of deactivating defensive plant canals with canal cutting often have broad host ranges. A total of 94 species of canal-cutting insects were identified from the literature, including eight new canal cutters described in this paper. Only 27% of canal cutters with known host ranges are generalists that feed on plants in multiple families. The proportion of generalist canal cutters is similar or lower than estimates of generalists among phytophagous insects overall. Only five species, at most, of the canal-cutting generalists feed exclusively on plants with secretory canals. The paucity of generalists can be attributed in part to the considerable taxonomic distance separating canal-bearing plant families and to their corresponding chemical distinctiveness. The dependence of many canal-cutting species on host chemicals for defence would also favour specialization. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96, 715,731. [source]