Home About us Contact | |||
Radial Distance (radial + distance)
Selected AbstractsOn the mechanism of fatigue failure in the superlong life regime (N>107 cycles).FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 11 2000Part II: influence of hydrogen trapped by inclusions High cycle fatigue fracture surfaces of specimens in which failure was initiated at a subsurface inclusion were investigated by atomic force microscopy and by scanning electron microscopy. The surface roughness Ra increased with radial distance from the fracture origin (inclusion) under constant amplitude tension,compression fatigue, and the approximate relationship: Ra,,,C,K,2I holds. At the border of a fish-eye there is a stretched zone. Dimple patterns and intergranular fracture morphologies are present outside the border of the fish-eye. The height of the stretch zone is approximately a constant value around the periphery of the fish-eye. If we assume that a fatigue crack grows cycle-by-cycle from the edge of the optically dark area (ODA) outside the inclusion at the fracture origin to the border of the fish-eye, we can correlate the crack growth rate da/dN, stress intensity factor range ,KI and Ra for SCM435 steel by the equation and by da/dN proportional to the parameter Ra,. Integrating the crack growth rate equation, the crack propagation period Np2 consumed from the edge of the ODA to the border of the fish-eye can be estimated for the specimens which failed at Nf,>,107. Values of Np2 were estimated to be ,1.0,×,106 for the specimens which failed at Nf,,,5,×,108. It follows that the fatigue life in the regime of Nf >107 is mostly spent in crack initiation and discrete crack growth inside the ODA. [source] Hydraulic observations from a 1 year fluid production test in the 4000 m deep KTB pilot boreholeGEOFLUIDS (ELECTRONIC), Issue 1 2006W. GRÄSLE Abstract A long-term pump test was conducted in the KTB pilot borehole (KTB-VB), located in the Oberpfalz area, Germany. It produced 22 300 m3 of formation fluid. Initially, fluid production rate was 29 l min,1 for 4 months, but was then raised to an average of 57 l min,1 for eight more months. The aim of this study was to examine the fluid parameters and hydraulic properties of fractured, crystalline crusts as part of the new KTB programme ,Energy and Fluid Transport in Continental Fault Systems'. KTB-VB has an open-hole section from 3850 to 4000 m depth that is in hydraulic contact with a prominent continental fault system in the area, called SE2. Salinity and temperature of the fluid inside the borehole, and consequently hydrostatic pressure, changed significantly throughout the test. Influence of these quantities on variations in fluid density had to be taken into account for interpretation of the pump test. Modelling of the pressure response related to the pumping was achieved assuming the validity of linear Darcy flow and permeability to be independent of the flow rate. Following the principle ,minimum in model dimension', we first examined whether the pressure response can be explained by an equivalent model where rock properties around the borehole are axially symmetric. Calculations show that the observed pressure data in KTB-VB can in fact be reproduced through such a configuration. For the period of high pumping rate (57 l min,1) and the following recovery phase, the resulting parameters are 2.4 × 10,13 m3 in hydraulic transmissivity and 3.7 × 10,9 m Pa,1 in storativity for radial distances up to 187 m, and 4.7 × 10,14 m3 and 6.0 × 10,9 m Pa,1, respectively, for radial distances between 187 and 1200 m. The former pair of values mainly reflect the hydraulic properties of the fault zone SE2. For a more realistic hydraulic study on a greater scale, program FEFLOW was used. Parameter values were obtained by matching the calculated induced pressure signal to fluid-level variations observed in the KTB main hole (KTB-HB) located at 200 m radial distance from KTB-VB. KTB-HB is uncased from 9031 to 9100 m and shows indications of leakage in the casing at depths 5200,5600 m. Analysis of the pressure record and hydraulic modelling suggest the existence of a weak hydraulic communication between the two boreholes, probably at depths around the leakage. Hydraulic modelling of a major slug-test in KTB-HB that was run during the pumping in KTB-VB reveals the effective transmissivity of the connected formation to be 1 to 2 orders of magnitude lower than the one determined for the SE2 fault zone. [source] Analytical Methods for Transient Flow to a Well in a Confined-Unconfined AquiferGROUND WATER, Issue 4 2008Li-Tang Hu Concurrent existence of confined and unconfined zones of an aquifer can arise owing to ground water withdrawal by pumping. Using Girinskii's potential function, Chen (1974, 1983) developed an approximate analytical solution to analyze transient ground water flow to a pumping well in an aquifer that changes from an initially confined system to a system with both unconfined and confined regimes. This article presents the details of the Chen model and then compares it with the analytical model developed by Moench and Prickett (1972) for the same problem. Hypothetical pumping test examples in which the aquifer undergoes conversion from confined to water table conditions are solved by the two analytical models and also a numerical model based on MODFLOW. Comparison of the results suggests that the solutions of the Chen model give better results than the Moench and Prickett model except when the radial distance is very large or aquifer thickness is large compared with drawdown. [source] Analysis of Steady Ground Water Flow Toward Wells in a Confined-Unconfined AquiferGROUND WATER, Issue 4 2006Chen Chong-Xi A confined aquifer may become unconfined near the pumping wells when the water level falls below the confining unit in the case where the pumping rate is great and the excess hydraulic head over the top of the aquifer is small. Girinskii's potential function is applied to analyze the steady ground water flow induced by pumping wells with a constant-head boundary in a mixed confined-unconfined aquifer. The solution of the single-well problem is derived, and the critical radial distance at which the flow changes from confined to unconfined condition is obtained. Using image wells and the superposition method, an analytic solution is presented to study steady ground water flow induced by a group of pumping wells in an aquifer bounded by a river with constant head. A dimensionless function is introduced to determine whether a water table condition exists or not near the pumping wells. An example with three pumping wells is used to demonstrate the patterns of potentiometric surface and development of water table around the wells. [source] Effect of water inlet velocity on thermal stratification in a mantled hot water storage tankINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 3 2006N. Altuntop Abstract Thermal stratification in a mantled hot water storage tank is analysed numerically for different water inlet velocities. The aim is to obtain higher thermal stratification and supply hot water for usage as long as possible. Twelve different water inlet velocities to the hot water storage tank are considered. The numerical method is validated by comparing its results against experimental and numerical results from the literature. It turned out that the results obtained from the numerical analysis have shown very good agreements with the results from previous works. As a result, the water temperature in the tank increases with the increase of the water inlet velocities to the mantle but this increment is not proportional. After a period of operation of 7.2 h, which corresponds to the average sunshine duration in Turkey, temperature increments of 6.5 and 35 K have been estimated for the hot water inlet velocities of 0.01 and 0.3 m s,1, respectively, at a radial distance of 0.1 m and a height of 1 m inside the storage tank. Copyright © 2005 John Wiley & Sons, Ltd. [source] Chemical enrichment of the intracluster medium by FR II radio sourcesMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2007D. Heath ABSTRACT We present 2D axisymmetric hydrodynamic simulations investigating the long-term effect of Fanaroff,Riley type II radio galaxies on the metal distribution of the surrounding intracluster medium (ICM). A light jet is injected into a cooling flow atmosphere for 10,30 Myr. We then follow the subsequent evolution for 3 Gyr on a spherical grid spanning 3 Mpc in radius. A series of passive tracer particles were placed in an annulus about the cluster core to simulate metal carrying clouds in order to calculate the metallicity (Z) as a function of time and radial distance from the cluster centre. The jet has a significant effect on the ICM over the entire 3-Gyr period. By the end of the simulations, the jets produced metallicities of ,10 per cent of the initial metallicity of the cluster core throughout much of the cluster. The jets transport the metals not only in mixing regions, but also through upwelling ICM behind the jet, enriching the cluster over both long and short distances. [source] A two-dimensional electrodynamical outer gap model for ,-ray pulsars: ,-ray spectrumMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006J. Takata ABSTRACT A two-dimensional electrodynamical model is used to study particle acceleration in the outer magnetosphere of a pulsar. The charge depletion from the Goldreich,Julian charge density causes a large electric field along the magnetic field lines. The charge particles are accelerated by the electric field and emit ,-rays via the curvature process. Some of the emitted ,-rays may collide with X-ray photons to make new pairs, which are accelerated again on the different field lines and emit ,-rays. We simulate the pair creation cascade in the meridional plane using the pair creation mean-free path, in which the X-ray photon number density is proportional to the inverse square of the radial distance. With the space charge density determined by the pair creation simulation, we solve the electric structure of the outer gap in the meridional plane and calculate the curvature spectrum. We investigate in detail the relation between the spectrum and total current, which is carried by the particles produced in the gap and/or injected at the boundaries of the gap. We demonstrate that the hardness of the spectrum is strongly controlled by the current carriers. Especially, the spectrum sharply softens if we assume a larger particle injection at the outer boundary of the outer gap. This is because the mean-free path of the pair creation of the inwardly propagating ,-ray photons is much shorter than the light radius, so many pairs are produced in the gap to quench the outer gap. Because the two-dimensional model can link both gap width along the magnetic field line and trans-field thickness with the spectral cut-off energy and flux, we can diagnose both the current through the gap and the inclination angle between the rotational and magnetic axes. We apply the theory to the Vela pulsar. By comparing the results with the Energetic Gamma Ray Experiment Telescope (EGRET) data, we rule out any cases that have a large particle injection at the outer boundary. We also suggest the inclination angle of ,inc, 65°. The present model predicts the outer gap starting from near the conventional null charge surface for the Vela pulsar. [source] An Integrated Atmospheric Microwave Plasma SourcePLASMA PROCESSES AND POLYMERS, Issue S1 2009Reinhold Kovacs Abstract Atmospheric plasma processes become more and more popular in recent times. A new integrated atmospheric plasma source is presented which consists of a microwave resonator combined with a solid-state power oscillator. This allows for a very compact and efficient design of a microwave plasma source without external microwave power supply and matching units. Hydrophobic polymers have to be activated to ensure an effective painting or glueing. The performance of this new plasma source has been investigated with respect to surface activation depending on axial and radial distance to the substrate, process time, process gas, and flow velocity. Several polymeric materials have been compared. Polyethylene, polyamide, polystyrene, polypropylene, polycarbonate, and polytetrafluorineethylene show good activation results. This tool can be used especially for bulky goods and/or mass products, when a vacuum process is not possible or too expensive. [source] MHD waves in the solar north polar coronal holeASTRONOMISCHE NACHRICHTEN, Issue 7 2010E. Devlen Abstract The effects, hitherto not treated, of the temperature and the number density gradients, both in the parallel and the perpendicular direction to the magnetic field, of O VI ions, on the MHD wave propagation characteristics in the solar North Polar Coronal Hole are investigated. We investigate the magnetosonic wave propagation in a resistive MHD regime where only the thermal conduction is taken into account. Heat conduction across the magnetic field is treated in a non-classical approach wherein the heat is assumed to be conducted by the plasma waves emitted by ions and absorbed at a distance from the source by other ions. Anisotropic temperature and the number density distributions of O VI ions revealed the chaotic nature of MHD standing wave, especially near the plume/interplume lane borders. Attenuation length scales of the fast mode is shown not to be smoothly varying function of the radial distance from the Sun (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Age-Dependent Radial Increases in Wood Specific Gravity of Tropical Pioneers in Costa RicaBIOTROPICA, Issue 5 2010G. Bruce Williamson ABSTRACT Wood specific gravity is the single best descriptor of wood functional properties and tree life-history traits, and it is the most important variable in estimating carbon stocks in forests. Tropical pioneer trees produce wood of increasing specific gravity across the trunk radius as they grow in stature. Here, we tested whether radial increases in wood specific gravity were dependent on a tree's diameter or its age by comparing trees of different diameters within cohorts. We cored trunks of four pioneer species in naturally regenerating, even-aged stands in the lowland, wet forests of Costa Rica. For each core, specific gravity was determined for 1-cm radial wood segments, pith to bark. Increases across the radius were evident in all four species studied, and in four different stands for one species. For any given species in a given stand, the rate of radial increase in specific gravity as a function of radial distance from the pith was greater in smaller diameter trees. As the trees in a stand represent a colonizing cohort, these results strongly suggest that the radial increases in specific gravity in lowland pioneers are associated with tree age, not with tree diameter. Furthermore, the specific gravity of the outermost wood was not associated with tree radius, further negating size dependence. One consequence of these results is that species-specific biomass estimates for trees in secondary forests are likely to be confounded by age, as diameter alone may be a poor indicator of specific gravity in individual trees for pioneers of tropical wet forests. Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp [source] Hydraulic observations from a 1 year fluid production test in the 4000 m deep KTB pilot boreholeGEOFLUIDS (ELECTRONIC), Issue 1 2006W. GRÄSLE Abstract A long-term pump test was conducted in the KTB pilot borehole (KTB-VB), located in the Oberpfalz area, Germany. It produced 22 300 m3 of formation fluid. Initially, fluid production rate was 29 l min,1 for 4 months, but was then raised to an average of 57 l min,1 for eight more months. The aim of this study was to examine the fluid parameters and hydraulic properties of fractured, crystalline crusts as part of the new KTB programme ,Energy and Fluid Transport in Continental Fault Systems'. KTB-VB has an open-hole section from 3850 to 4000 m depth that is in hydraulic contact with a prominent continental fault system in the area, called SE2. Salinity and temperature of the fluid inside the borehole, and consequently hydrostatic pressure, changed significantly throughout the test. Influence of these quantities on variations in fluid density had to be taken into account for interpretation of the pump test. Modelling of the pressure response related to the pumping was achieved assuming the validity of linear Darcy flow and permeability to be independent of the flow rate. Following the principle ,minimum in model dimension', we first examined whether the pressure response can be explained by an equivalent model where rock properties around the borehole are axially symmetric. Calculations show that the observed pressure data in KTB-VB can in fact be reproduced through such a configuration. For the period of high pumping rate (57 l min,1) and the following recovery phase, the resulting parameters are 2.4 × 10,13 m3 in hydraulic transmissivity and 3.7 × 10,9 m Pa,1 in storativity for radial distances up to 187 m, and 4.7 × 10,14 m3 and 6.0 × 10,9 m Pa,1, respectively, for radial distances between 187 and 1200 m. The former pair of values mainly reflect the hydraulic properties of the fault zone SE2. For a more realistic hydraulic study on a greater scale, program FEFLOW was used. Parameter values were obtained by matching the calculated induced pressure signal to fluid-level variations observed in the KTB main hole (KTB-HB) located at 200 m radial distance from KTB-VB. KTB-HB is uncased from 9031 to 9100 m and shows indications of leakage in the casing at depths 5200,5600 m. Analysis of the pressure record and hydraulic modelling suggest the existence of a weak hydraulic communication between the two boreholes, probably at depths around the leakage. Hydraulic modelling of a major slug-test in KTB-HB that was run during the pumping in KTB-VB reveals the effective transmissivity of the connected formation to be 1 to 2 orders of magnitude lower than the one determined for the SE2 fault zone. [source] Closed-loop identification of the time-varying dynamics of variable-speed wind turbinesINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 1 2009J. W. van Wingerden Abstract The trend with offshore wind turbines is to increase the rotor diameter as much as possible to decrease the costs per kWh. The increasing dimensions have led to the relative increase in the loads on the wind turbine structure. Because of the increasing rotor size and the spatial load variations along the blade, it is necessary to react to turbulence in a more detailed way: each blade separately and at several separate radial distances. This combined with the strong nonlinear behavior of wind turbines motivates the need for accurate linear parameter-varying (LPV) models for which advanced control synthesis techniques exist within the robust control framework. In this paper we present a closed-loop LPV identification algorithm that uses dedicated scheduling sequences to identify the rotational dynamics of a wind turbine. We assume that the system undergoes the same time variation several times, which makes it possible to use time-invariant identification methods as the input and the output data are chosen from the same point in the variation of the system. We use time-invariant techniques to identify a number of extended observability matrices and state sequences that are inherent to subspace identification identified in a different state basis. We show that by formulating an intersection problem all states can be reconstructed in a general state basis from which the system matrices can be estimated. The novel algorithm is applied on a wind turbine model operating in closed loop. Copyright © 2008 John Wiley & Sons, Ltd. [source] Observations and interpretations at Vredefort, Sudbury, and Chicxulub: Towards an empirical model of terrestrial impact basin formationMETEORITICS & PLANETARY SCIENCE, Issue 5 2008Richard A. F. GRIEVE Assuming that the structures originally had the same morphology, the observations/interpretations for each structure are compared and extended to the other structures. This does not result in any major inconsistencies but requires that the observations be scaled spatially. In the case of Vredefort and Sudbury, this is accomplished by scaling the outer limit of particular shock metamorphic features. In the case of Chicxulub, scaling requires a reasoned assumption as to the formation mechanism of an interior peak ring. The observations/interpretations are then used to construct an integrated, empirical kinematic model for a terrestrial peak-ring basin. The major attributes of the model include: a set of outward-directed thrusts in the parautochthonous rocks of the outermost environs of the crater floor, some of which are pre-existing structures that have been reactivated during transient cavity formation; inward-directed motions along the same outermost structures and along a set of structures, at intermediate radial distances, during transient cavity collapse; structural uplift in the center followed by a final set of radially outward-directed thrusts at the outer edges of the structural uplift, during uplift collapse. The rock displacements on the intermediate, inward and innermost, outward sets of structures are consistent with the assumption that a peak ring will result from the convergence of the collapse of the transient cavity rim area and the collapse of the structural uplift. [source] |