RNA Processing (rna + processing)

Distribution by Scientific Domains


Selected Abstracts


Actin on DNA,An ancient and dynamic relationship,

CYTOSKELETON, Issue 8 2010
Kari-Pekka Skarp
Abstract In the cytoplasm of eukaryotic cells the coordinated assembly of actin filaments drives essential cell biological processes, such as cell migration. The discovery of prokaryotic actin homologues, as well as the appreciation of the existence of nuclear actin, have expanded the scope by which the actin family is utilized in different cell types. In bacteria, actin has been implicated in DNA movement tasks, while the connection with the RNA polymerase machinery appears to exist in both prokaryotes and eukaryotes. Within the nucleus, actin has further been shown to play a role in chromatin remodeling and RNA processing, possibly acting to link these to transcription, thereby facilitating the gene expression process. The molecular mechanism by which actin exerts these newly discovered functions is still unclear, because while polymer formation seems to be required in bacteria, these species lack conventional actin-binding proteins to regulate the process. Furthermore, although the nucleus contains a plethora of actin-regulating factors, the polymerization status of actin within this compartment still remains unclear. General theme, however, seems to be actin's ability to interact with numerous binding partners. A common feature to the novel modes of actin utilization is the connection between actin and DNA, and here we aim to review the recent literature to explore how this connection is exploited in different contexts. [source]


Functional association of human Ki-1/57 with pre-mRNA splicing events

FEBS JOURNAL, Issue 14 2009
Gustavo C. Bressan
The cytoplasmic and nuclear protein Ki-1/57 was first identified in malignant cells from Hodgkin's lymphoma. Despite studies showing its phosphorylation, arginine methylation, and interaction with several regulatory proteins, the functional role of Ki-1/57 in human cells remains to be determined. Here, we investigated the relationship of Ki-1/57 with RNA functions. Through immunoprecipitation assays, we verified the association of Ki-1/57 with the endogenous splicing proteins hnRNPQ and SFRS9 in HeLa cell extracts. We also found that recombinant Ki-1/57 was able to bind to a poly-U RNA probe in electrophoretic mobility shift assays. In a classic splicing test, we showed that Ki-1/57 can modify the splicing site selection of the adenoviral E1A minigene in a dose-dependent manner. Further confocal and fluorescence microscopy analysis revealed the localization of enhanced green fluorescent protein,Ki-1/57 to nuclear bodies involved in RNA processing and or small nuclear ribonucleoprotein assembly, depending on the cellular methylation status and its N-terminal region. In summary, our findings suggest that Ki-1/57 is probably involved in cellular events related to RNA functions, such as pre-mRNA splicing. Structured digital abstract ,,MINT-7041074: Ki-1/57 (uniprotkb:Q5JVS0) physically interacts (MI:0915) with SF2P32 (uniprotkb:Q07021) by two hybrid (MI:0018) ,,MINT-7041232: Ki-1/57 (uniprotkb:Q5JVS0) physically interacts (MI:0915) with SFRS9 (uniprotkb:Q13242) by pull down (MI:0096) ,,MINT-7041203: P80-Coilin (uniprotkb:P38432) and Ki-1/57 (uniprotkb:Q5JVS0) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7041217: SMN (uniprotkb:Q16637) and Ki-1/57 (uniprotkb:Q5JVS0) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7041189: SC-35 (uniprotkb:Q01130) and Ki-1/57 (uniprotkb:Q5JVS0) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7041169: NPM (uniprotkb:P06748) and Ki-1/57 (uniprotkb:Q5JVS0) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7041249: Ki-1/57 (uniprotkb:Q5JVS0) physically interacts (MI:0915) with SFRS9 (uniprotkb:O60506) by pull down (MI:0096) ,,MINT-7041065: Ki-1/57 (uniprotkb:Q5JVS0) physically interacts (MI:0915) with SFRS9 (uniprotkb:Q13242) by two hybrid (MI:0018) ,,MINT-7041069: Ki-1/57 (uniprotkb:Q5JVS0) physically interacts (MI:0915) with YB1 (uniprotkb:P67809) by two hybrid (MI:0018) ,,MINT-7041079: Ki-1/57 (uniprotkb:Q5JVS0) physically interacts (MI:0915) with HNRPQ (uniprotkb:O60506) by two hybrid (MI:0018) ,,MINT-7041087: Ki-1/57 (uniprotkb:Q5JVS0) physically interacts (MI:0218) with HNRPQ3 (uniprotkb:O60506-1), HNRPQ2 (uniprotkb:O60506-2) and HNRPQ-1 (uniprotkb:O60506-3) by anti bait coimmunoprecipitation (MI:0006) [source]


Mis3 with a conserved RNA binding motif is essential for ribosome biogenesis and implicated in the start of cell growth and S phase checkpoint

GENES TO CELLS, Issue 7 2000
Hiroshi Kondoh
Background In normal somatic cell cycle, growth and cell cycle are properly coupled. Although CDK (cyclin-dependent kinase) activity is known to be essential for cell cycle control, the mechanism to ensure the coupling has been little understood. Results We here show that fission yeast Mis3, a novel evolutionarily highly conserved protein with the RNA-interacting KH motif, is essential for ribosome RNA processing, and implicated in initiating the cell growth. Growth arrest of mis3-224, a temperature sensitive mutant at the restrictive temperature, coincides with the early G2 block in the complete medium or the G1/S block in the release from nitrogen starvation, reflecting coupling of cell growth and division. Genetic interactions indicated that Mis3 shares functions with cell cycle regulators and RNA processing proteins, and is under the control of Dsk1 kinase and PP1 phosphatase. Mis3 is needed for the formation of 18S ribosome RNA, and may hence direct the level of proteins required for the coupling. One such candidate is Mik1 kinase. mis3-224 is sensitive to hydroxyurea, and the level of Mik1 protein increases during replication checkpoint in a manner dependent upon the presence of Mis3 and Cds1. Conclusions Mis3 is essential for ribosome biogenesis, supports S phase checkpoint, and is needed for the coupling between growth and cell cycle. Whether Mis3 interacts solely with ribosomal precursor RNA remains to be determined. [source]


A Novel Synthesis of Highly Substituted Perhydropyrrolizines, Perhydroindolizines, and Pyrrolidines: Inhibition of the Peptidyl-Prolyl cis/trans Isomerase (PPIase) Pin1

HELVETICA CHIMICA ACTA, Issue 2 2007
Romain Siegrist
Abstract In this paper, we describe the synthesis and biological evaluation of highly substituted perhydropyrrolizines that inhibit the peptidyl-prolyl cis/trans isomerase (PPIase) Pin1, an oncogenic target. The enzyme selectively catalyzes the cis/trans isomerization of peptide bonds between a phosphorylated serine or threonine, and proline, thereby inducing a conformational change. Such structural modifications play an important role in many cellular events, such as cell-cycle progression, transcriptional regulation, RNA processing, as well as cell proliferation and differentiation. Based on computer modeling (Fig.,2), the new perhydropyrrolizinone derivatives (,)- 1a,b, decorated with two substituents, were selected and synthesized (Schemes,1,3). While enzymatic assays showed no biological activity, 15N,1H-HSQC-NMR spectroscopy revealed that (,)- 1a,b bind to the WW recognition domain of Pin1, apparently in a mode that does not inhibit PPIase activity. To enforce complexation into the larger active site rather than into the tighter WW domain of Pin1 and to enhance the overall binding affinity, we designed a perhydropyrrolizine scaffold substituted with additional aromatic residues (Fig.,5). A novel, straightforward synthesis towards this class of compounds was developed (Schemes,4 and 5), and the racemic compounds (±)- 22a,22d were found to inhibit Pin1 with Ki values (Ki,=,inhibition constant) in the micromolar range (Table,2). To further enhance the potency of these inhibitors, the optically pure ligands (+)- 22a and (+)- 33b,c were prepared (Schemes,6 and 7) and shown to inhibit Pin1 with Ki values down to the single-digit micromolar range. According to 15N,1H-HSQC-NMR spectroscopy and enzymatic activity assays, binding occurs at both the WW domain and the active site of Pin1. Furthermore, the new synthetic protocol towards perhydropyrrolizines was extended to the preparation of highly substituted perhydroindolizine ((±)- 43; Scheme,8) and pyrrolidine ((±)- 48a,b; Scheme,9) derivatives, illustrating a new, potentially general access to these highly substituted heterocycles. [source]


RNase P RNA-mediated cleavage

IUBMB LIFE, Issue 3 2009
Leif A. Kirsebom
Abstract Metal(II)-induced hydrolysis of RNA produce products with 5,-hydroxyls and 2,;3,-cyclic phosphates at the ends. Ribozymes are RNA molecules that act as catalysts. Some ribozymes that cleave RNA also generate 5,-hydroxyls and 2,;3,-cyclic phosphates whereas others produces 5,-phosphates and 3,-hydroxyls at the ends of the cleavage products. RNase P is an essential endoribonuclease involved in RNA processing. The catalytic RNA subunit of RNase P is a trans-acting ribozyme that cleaves various RNA substrates in vitro generating 5,-phosphates and 3,-hydroxyls as cleavage products. The activity depends on the presence of metal(II) ions such as Mg2+. RNase P RNA has therefore to facilitate a nucleophilic attack that generates the correct product ends and prevent metal(II)-induced hydrolysis of the RNA substrate. In this review, we will discuss our current understanding of the interactions between RNase P RNA and its substrate, role of specific residues with respect to catalysis and positioning of functionally important Mg2+ at and in the vicinity of the cleavage site that ensures that products with correct ends are generated. Moreover, we will discuss the composition of RNase P and its RNA subunit in an evolutionary perspective. © 2009 IUBMB IUBMB Life, 61(3):189,200, 2009 [source]


Oncogene expression profiles in K6/ODC mouse skin and papillomas following a chronic exposure to monomethylarsonous acid,

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 6 2009
Don A. Delker
Abstract We have previously observed that a chronic drinking water exposure to monomethylarsonous acid [MMA(III)], a cellular metabolite of inorganic arsenic, increases tumor frequency in the skin of keratin VI/ornithine decarboxylase (K6/ODC) transgenic mice. To characterize gene expression profiles predictive of MMA(III) exposure and mode of action of carcinogenesis, skin and papilloma RNA was isolated from K6/ODC mice administered 0, 10, 50, and 100 ppm MMA(III) in their drinking water for 26 weeks. Following RNA processing, the resulting cRNA samples were hybridized to Affymetrix Mouse Genome 430A 2.0 GeneChips®. Micoarray data were normalized using MAS 5.0 software, and statistically significant genes were determined using a regularized t -test. Significant changes in bZIP transcription factors, MAP kinase signaling, chromatin remodeling, and lipid metabolism gene transcripts were observed following MMA(III) exposure as determined using the Database for Annotation, Visualization and Integrated Discovery 2.1 (DAVID) (Dennis et al., Genome Biol 2003;4(5):P3). MMA(III) also caused dose-dependent changes in multiple Rho guanine nucleotide triphosphatase (GTPase) and cell cycle related genes as determined by linear regression analyses. Observed increases in transcript abundance of Fosl1, Myc, and Rac1 oncogenes in mouse skin support previous reports on the inducibility of these oncogenes in response to arsenic and support the relevance of these genomic changes in skin tumor induction in the K6/ODC mouse model. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:406,418, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20304 [source]


Temporal expression changes during differentiation of neural stem cells derived from mouse embryonic stem cell

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2004
Joon-Ik Ahn
Abstract Temporal analysis in gene expression during differentiation of neural stem cells (NSCs) was performed by using in-house microarrays composed of 10,368 genes. The changes in mRNA level were measured during differentiation day 1, 2, 3, 6, 12, and 15. Out of 10,368 genes analyzed, 259 genes were up-regulated or down-regulated by 2-fold or more at least at one time-point during differentiation, and were classified into six clusters based on their expression patterns by K-means clustering. Clusters characterized by gradual increase have large numbers of genes involved in transport and cell adhesion; those which showed gradual decrease have much of genes in nucleic acid metabolism, cell cycle, transcription factor, and RNA processing. In situ hybridization (ISH) validated microarray data and it also showed that Fox M1, cyclin D2, and CDK4 were highly expressed in CNS germinal zones and ectonucleotide pyrophosphatase/phosphodiesterase 2 (Enpp2) was highly expressed in choroid plexus where stem/progenitor cells are possibly located. Together, this clustering analysis of expression patterns of functionally classified genes may give insight into understanding of CNS development and mechanisms of NSCs proliferation and differentiation. © 2004 Wiley-Liss, Inc. [source]


Genes Associated With Alcohol Abuse and Tobacco Smoking in the Human Nucleus Accumbens and Ventral Tegmental Area

ALCOHOLISM, Issue 7 2010
Traute Flatscher-Bader
Background:, The incidence of alcohol and tobacco co-abuse is as high as 80%. The molecular mechanism underlying this comorbidity is virtually unknown, but interactions between these drugs have important implications for the development of and recovery from drug dependence. Methods:, We investigated the effects of chronic tobacco and alcohol abuse and the interaction of the 2 behaviors on global gene expression in the human nucleus accumbens using cDNA microarrays and 20 alcoholic and control cases, with and without smoking comorbidity. Changes in gene expression were established by factorial ANOVA. Unsupervised hierarchical clustering was utilized to probe the strength of the data sets. Applying real-time PCR differential expression of candidate genes was confirmed in the nucleus accumbens and explored further in a second core region of the mesolimbic system, the ventral tegmental area. Results:, Subjecting the data sets derived from microarray gene expression screening to unsupervised hierarchical clustering tied the cases into distinct groups. When considering all alcohol-responsive genes, alcoholics were separated from nonalcoholics with the exception of 1 control case. All smokers were distinguished from nonsmokers based on similarity in expression of smoking-sensitive genes. In the nucleus accumbens, alcohol-responsive genes were associated with transcription, lipid metabolism, and signaling. Smoking-sensitive genes were predominantly assigned to functional groups concerned with RNA processing and the endoplasmic reticulum. Both drugs influenced the expression of genes involved in matrix remodeling, proliferation, and cell morphogenesis. Additionally, a gene set encoding proteins involved in the canonical pathway "regulation of the actin cytoskeleton" was induced in response to alcohol and tobacco co-abuse and included. Alcohol abuse elevated the expression of candidate genes in this pathway in the nucleus accumbens and ventral tegmental area, while smoking comorbidity blunted this induction in the ventral tegmental area. Conclusions:, The region-specific modulation of alcohol-sensitive gene expression by smoking may have important consequences for alcohol-induced aberrations within the mesolimbic dopaminergic system. [source]


New insights into the cellular organization of the RNA processing and degradation machinery of Escherichia coli

MOLECULAR MICROBIOLOGY, Issue 4 2008
Aziz Taghbalout
Summary Ribonuclease E (RNase E) is a component of the Escherichia coli RNA degradosome, a multiprotein complex that also includes RNA helicase B (RhlB), polynucleotide phosphorylase (PNPase) and enolase. The degradosome plays a key role in RNA processing and degradation. The degradosomal proteins are organized as a cytoskeletal-like structure within the cell that has been thought to be associated with the cytoplasmic membrane. The article by Khemici et al. in the current issue of Molecular Microbiology reports that RNase E can directly interact with membrane phospholipids in vitro. The RNase E,membrane interaction is likely to play an important role in the membrane association of the degradosome system. These findings shed light on important but largely unexplored aspects of cellular structure and function, including the organization of the RNA processing machinery of the cell and of bacterial cytoskeletal elements in general. [source]


Consequences of RNase E scarcity in Escherichia coli

MOLECULAR MICROBIOLOGY, Issue 4 2002
Chaitanya Jain
Summary The endoribonuclease RNase E plays an important role in RNA processing and degradation in Escherichia coli. The construction of an E. coli strain in which the cellular concentration of RNase E can be precisely controlled has made it possible to examine and quantify the effect of RNase E scarcity on RNA decay, gene regulation and cell growth. These studies show that RNase E participates in a step in the degradation of its RNA substrates that is partially or fully rate-determining. Our data also indicate that E. coli growth requires a cellular RNase E concentration at least 10,20% of normal and that the feedback mecha-nism that limits overproduction of RNase E is also able to increase its synthesis when its concentration drops below normal. The magnitude of the in-crease in RNA longevity under conditions of RNase E scarcity may be limited by an alternative pathway for RNA degradation. Additional experiments show that RNase E is a stable protein in E. coli. No other E. coli gene product, when either mutated or cloned on a multicopy plasmid, seems to be capable of compensating for an inadequate supply of this essential protein. [source]


A joint transcriptomic, proteomic and metabolic analysis of maize endosperm development and starch filling

PLANT BIOTECHNOLOGY JOURNAL, Issue 9 2008
Jean Louis Prioul
Summary The maize endosperm transcriptome was investigated through cDNA libraries developed at three characteristic stages: (i) lag phase [10 days after pollination (DAP)]; (ii) beginning of storage (14 DAP); and (iii) maximum starch accumulation rate (21 DAP). Expressed sequence tags for 711, 757 and 384 relevant clones, respectively, were obtained and checked manually. The proportion of sequences with no clear function decreased from 35% to 20%, and a large increase in storage protein sequences (i.e. 5% to 38%) was observed from stages (i) to (iii). The remaining major categories included metabolism (11%,13%), transcription,RNA processing,protein synthesis (13%,20%), protein destination (5%,9%), cellular communication (3%,9%) and cell rescue,defence (4%). Good agreement was generally found between category rank in the 10-DAP transcriptome and the recently reported 14-DAP proteome, except that kinases and proteins for RNA processing were not detected in the latter. In the metabolism category, the respiratory pathway transcripts represented the largest proportion (25%,37%), and showed a shift in favour of glycolysis at 21 DAP. At this stage, amino acid metabolism increased to 17%, whereas starch metabolism surprisingly decreased to 7%. A second experiment focused on carbohydrate metabolism by comparing gene expression at three levels (transcripts, proteins and enzyme activities) in relation to substrate or product from 10 to 40 DAP. Here, two distinct patterns were observed: invertases and hexoses were predominant at the beginning, whereas enzyme patterns in the starch pathway, at the three levels, anticipated and paralleled starch accumulation, suggesting that, in most cases, transcriptional control is responsible for the regulation of starch biosynthesis. [source]


Molecular recognition between Escherichia coli enolase and ribonuclease E

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 9 2010
Salima Nurmohamed
In Escherichia coli and many other bacterial species, the glycolytic enzyme enolase is a component of the multi-enzyme RNA degradosome, an assembly that is involved in RNA processing and degradation. Enolase is recruited into the degradosome through interactions with a small recognition motif located within the degradosome-scaffolding domain of RNase E. Here, the crystal structure of enolase bound to its cognate site from RNase E (residues 823,850) at 1.9,Å resolution is presented. The structure suggests that enolase may help to organize an adjacent conserved RNA-binding motif in RNase E. [source]


RPP25 is developmentally regulated in prefrontal cortex and expressed at decreased levels in autism spectrum disorder

AUTISM RESEARCH, Issue 4 2010
Hsien-Sung Huang
Abstract Dysfunction of cerebral cortex in autism is thought to involve alterations in inhibitory neurotransmission. Here, we screened, in prefrontal cortex (PFC) of 15 subjects diagnosed with autism and 15 matched controls the expression of 44 transcripts that are either preferentially expressed in gamma-aminobutyric acidergic interneurons of the mature cortex or important for the development of inhibitory circuitry. Significant alterations in the autism cohort included decreased expression (,45%) of RPP25 (15q24.1), which is located within the autism susceptibility locus, 15q22-26. RPP25, which encodes the 25,kDa subunit of ribonuclease P involved in tRNA and pre-ribosomal RNA processing, was developmentally regulated in cerebral cortex with peak levels of expression during late fetal development (human) or around birth (mouse). In the PFC, RPP25 chromatin showed high levels of histone H3-lysine 4 trimethylation, an epigenetic mark associated with transcriptional regulation. Unexpectedly, and in contrast to peripheral tissues, levels of RPP25 protein remained undetectable in fetal and adult cerebral cortex. Taken together, these findings suggest a potential role for the RPP25 gene transcript in the neurobiology of developmental brain disorders. [source]


Expression, purification and preliminary crystallographic analysis of recombinant human DEAD-box polypeptide 5

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 2 2010
Yook-Wah Choi
The DEAD-box RNA helicase DDX5 is involved in many aspects of RNA processing and has been implicated in a number of cellular processes involving alteration of RNA secondary structure. The N-terminal region of DDX5, which contains the conserved domain 1 of the DEAD-box helicases, has been cloned and expressed in Escherichia coli and purified. Here, the crystallization and preliminary diffraction analysis of this region is reported. X-ray diffraction data were processed to a resolution of 2.7,Å. The crystals belonged to space group I222, with unit-cell parameters a = 66.18, b = 73.80, c = 104.00,Å, , = , = , = 90°. [source]


(,)-Epigallocatechin-3-gallate induces Du145 prostate cancer cell death via downregulation of inhibitor of DNA binding 2, a dominant negative helix-loop-helix protein

CANCER SCIENCE, Issue 3 2010
Katherine L. Luo
(Cancer Sci 2010; 101: 707,712) (,)-Epigallocatechin-3-gallate (EGCG) is one of the major polyphenol components in green tea. It effectively induces apoptosis in prostate cancer cells. The anticancer effect of this reagent is appealing because it is a natural component of a popular daily beverage that has proven harmless for thousands of years, making it a good candidate chemopreventive agent. EGCG suppresses cell growth and causes cell death, but the mechanisms are not well characterized, especially in androgen-independent prostate cancer cells. In the present study, using Affymetrix genechip Hu133 2.0, we analyzed the gene expression patterns of the androgen-independent prostate cancer cell line Du145, treated with or without EGCG, and found 40 genes whose expression levels were altered (>twofold, either upregulated or downregulated, P < 0.01) upon treatment with EGCG. These gene products are involved in the functions of transcription, RNA processing, protein folding, phosphorylation, protein degradation, cell motility, and ion transport. Among them, inhibitor of DNA binding 2 (ID2), known as a dominant anti-retinoblastoma (Rb) helix-loop-helix protein, was found to be downregulated fourfold by EGCG treatment. Forced expression of ID2 in Du145 cells reduced apoptosis and increased cell survival in the presence of EGCG, and knockdown ID2 expression in Du145 cells using a morpholino oligonucleotide specific for ID2 mimicked the apoptosis effect generated by EGCG treatment, although it was milder. To our knowledge, this is the first report indicating that ID2 is one of the critical factors in the signaling pathway of Du145 cell death induced by EGCG. [source]