RNA Binding Motif (rna + binding_motif)

Distribution by Scientific Domains


Selected Abstracts


RNA binding motif (RBM) proteins: A novel family of apoptosis modulators?

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2005
Leslie C. Sutherland
Abstract RBM5 is a known modulator of apoptosis, an RNA binding protein, and a putative tumor suppressor. Originally identified as LUCA-15, and subsequently as H37, it was designated "RBM" (for RNA Binding Motif) due to the presence of two RRM (RNA Recognition Motif) domains within the protein coding sequence. Recently, a number of proteins have been attributed with this same RBM designation, based on the presence of one or more RRM consensus sequences. One such protein, RBM3, was also recently found to have apoptotic modulatory capabilities. The high sequence homology at the amino acid level between RBM5, RBM6, and particularly, RBM10 suggests that they, too, may play an important role in regulating apoptosis. It is the intent of this article to ammalgamate the data on the ten originally identified RBM proteins in order to question the existence of a novel family of RNA binding apoptosis regulators. © 2004 Wiley-Liss, Inc. [source]


Mis3 with a conserved RNA binding motif is essential for ribosome biogenesis and implicated in the start of cell growth and S phase checkpoint

GENES TO CELLS, Issue 7 2000
Hiroshi Kondoh
Background In normal somatic cell cycle, growth and cell cycle are properly coupled. Although CDK (cyclin-dependent kinase) activity is known to be essential for cell cycle control, the mechanism to ensure the coupling has been little understood. Results We here show that fission yeast Mis3, a novel evolutionarily highly conserved protein with the RNA-interacting KH motif, is essential for ribosome RNA processing, and implicated in initiating the cell growth. Growth arrest of mis3-224, a temperature sensitive mutant at the restrictive temperature, coincides with the early G2 block in the complete medium or the G1/S block in the release from nitrogen starvation, reflecting coupling of cell growth and division. Genetic interactions indicated that Mis3 shares functions with cell cycle regulators and RNA processing proteins, and is under the control of Dsk1 kinase and PP1 phosphatase. Mis3 is needed for the formation of 18S ribosome RNA, and may hence direct the level of proteins required for the coupling. One such candidate is Mik1 kinase. mis3-224 is sensitive to hydroxyurea, and the level of Mik1 protein increases during replication checkpoint in a manner dependent upon the presence of Mis3 and Cds1. Conclusions Mis3 is essential for ribosome biogenesis, supports S phase checkpoint, and is needed for the coupling between growth and cell cycle. Whether Mis3 interacts solely with ribosomal precursor RNA remains to be determined. [source]


RNA binding motif (RBM) proteins: A novel family of apoptosis modulators?

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2005
Leslie C. Sutherland
Abstract RBM5 is a known modulator of apoptosis, an RNA binding protein, and a putative tumor suppressor. Originally identified as LUCA-15, and subsequently as H37, it was designated "RBM" (for RNA Binding Motif) due to the presence of two RRM (RNA Recognition Motif) domains within the protein coding sequence. Recently, a number of proteins have been attributed with this same RBM designation, based on the presence of one or more RRM consensus sequences. One such protein, RBM3, was also recently found to have apoptotic modulatory capabilities. The high sequence homology at the amino acid level between RBM5, RBM6, and particularly, RBM10 suggests that they, too, may play an important role in regulating apoptosis. It is the intent of this article to ammalgamate the data on the ten originally identified RBM proteins in order to question the existence of a novel family of RNA binding apoptosis regulators. © 2004 Wiley-Liss, Inc. [source]


Sam68 is tyrosine phosphorylated and recruited to signalling in peripheral blood mononuclear cells from HIV infected patients

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2005
S. Najib
Summary Human immunodeficiency virus (HIV) codes for a protein, Rev, that mediates the viral RNA export from the nucleus to the cytoplasm. Recently, it has been found that Sam68, the substrate of Src associated in mitosis, is a functional homologue of Rev, and a synergistic activator of Rev activity. Thus, it has been suggested that Sam68 may play an important role in the post-transcriptional regulation of HIV. Sam68 contains an RNA binding motif named KH [homology to the nuclear ribonucleoprotein (hnRNP) K]. Tyrosine phosphorylation of Sam68 and binding to SH3 domains have been found to negatively regulate its RNA binding capacity. Besides, tyrosine phosphorylation of Sam68 allows the formation of signalling complexes with other proteins containing SH2 and SH3 domains, suggesting a role in signal transduction of different systems in human lymphocytes, such as the T cell receptor, and leptin receptor, or the insulin receptor in other cell types. In the present work, we have found that Sam68 is tyrosine phosphorylated in peripheral blood mononuclear cells (PBMC) from HIV infected subjects, leading to the formation of signalling complexes with p85 the regulatory subunit of PI3K, GAP and STAT-3, and decreasing its RNA binding capacity. In contrast, PBMC from HIV infected subjects have lower expression levels of Sam68 compared with controls. These results suggest that Sam68 may play some role in the immune function of lymphocytes in HIV infection. [source]