Home About us Contact | |||
Attentional Load (attentional + load)
Selected AbstractsAttentional load modifies early activity in human primary visual cortexHUMAN BRAIN MAPPING, Issue 5 2009Karsten S. Rauss Abstract Recent theories of selective attention assume that the more attention is required by a task, the earlier are irrelevant stimuli filtered during perceptual processing. Previous functional MRI studies have demonstrated that primary visual cortex (V1) activation by peripheral distractors is reduced by higher task difficulty at fixation, but it remains unknown whether such changes affect initial processing in V1 or subsequent feedback. Here we manipulated attentional load at fixation while recording peripheral visual responses with high-density EEG in 28 healthy volunteers, which allowed us to track the exact time course of attention-related effects on V1. Our results show a modulation of the earliest component of the visual evoked potential (C1) as a function of attentional load. Additional topographic and source localization analyses corroborated this finding, with significant load-related differences observed throughout the first 100 ms post-stimulus. However, this effect was observed only when stimuli were presented in the upper visual field (VF), but not for symmetrical positions in the lower VF. Our findings demonstrate early filtering of irrelevant information under increased attentional demands, thus supporting models that assume a flexible mechanism of attentional selection, but reveal important functional asymmetries across the VF. Hum Brain Mapp 2009. © 2008 Wiley-Liss, Inc. [source] Changes of effective connectivity between the lateral and medial parts of the prefrontal cortex during a visual taskEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2003Thierry Chaminade Abstract Structural equation modelling was used to study the change of connectivity during a visual task with continuous variation of the attention load. The model was based on areas defined by the haemodynamic responses described elsewhere [Mazoyer, P., Wicker, B. & Fonlupt, P. (2002) A neural network elicited by parametric manipulation of the attention load. Neuroreport, 13, 2331,2334], including occipitotemporal, parietal, temporal and prefrontal (lateral and medial areas) cortices. We have studied stationary- (which does not depend on the attentional load) and attention-related coupling between areas. This allowed the segregation of two subsystems. The first could reflect a system performing the integration step of the visual signal and the second a system participating in response selection. The major finding is the mutual negative influence between the lateral and medial parts of the prefrontal cortex. This negative influence between these two brain regions increased with the attention load. This is interpreted as a modification of the balance between integration and decision processes that are needed for the task to be efficiently completed. [source] Attentional load modifies early activity in human primary visual cortexHUMAN BRAIN MAPPING, Issue 5 2009Karsten S. Rauss Abstract Recent theories of selective attention assume that the more attention is required by a task, the earlier are irrelevant stimuli filtered during perceptual processing. Previous functional MRI studies have demonstrated that primary visual cortex (V1) activation by peripheral distractors is reduced by higher task difficulty at fixation, but it remains unknown whether such changes affect initial processing in V1 or subsequent feedback. Here we manipulated attentional load at fixation while recording peripheral visual responses with high-density EEG in 28 healthy volunteers, which allowed us to track the exact time course of attention-related effects on V1. Our results show a modulation of the earliest component of the visual evoked potential (C1) as a function of attentional load. Additional topographic and source localization analyses corroborated this finding, with significant load-related differences observed throughout the first 100 ms post-stimulus. However, this effect was observed only when stimuli were presented in the upper visual field (VF), but not for symmetrical positions in the lower VF. Our findings demonstrate early filtering of irrelevant information under increased attentional demands, thus supporting models that assume a flexible mechanism of attentional selection, but reveal important functional asymmetries across the VF. Hum Brain Mapp 2009. © 2008 Wiley-Liss, Inc. [source] Declined neural efficiency in cognitively stable human immunodeficiency virus patients,ANNALS OF NEUROLOGY, Issue 3 2009Thomas Ernst PhD Objective To determine whether brain activation changes in clinically and neurocognitively normal human immunodeficiency virus (HIV),infected and in HIV-seronegative control (SN) participants over a 1-year period. Methods Functional magnetic resonance imaging (fMRI) was performed in 32 SN and 31 HIV patients (all with stable combination antiretroviral treatment) at baseline and after 1 year. Each participant performed a set of visual attention tasks with increasing attentional load (from tracking two, three, or four balls). All HIV and SN participants had normal neuropsychological function at both examinations. Results Over 1 year, HIV patients showed no change in their neurocognitive status or in task performance during fMRI. However, HIV patients showed significant 1-year increases in fMRI signals in the prefrontal and posterior parietal cortices for the more difficult tasks, whereas SN control participants showed only decreases in brain activation in these regions. This resulted in significant interactions between HIV status and time of study in left insula, left parietal, left temporal, and several frontal regions (left and right middle frontal gyrus, and anterior cingulate). Interpretation Because fMRI task performance remained unchanged in both groups, the HIV patients appeared to maintain performance by increasing usage of the attention network, whereas the control participants reduced usage of the attention network after 1 year. These findings suggest improved efficiency or a practice effect in the SN participants but declined efficiency of the neural substrate in HIV patients, possibly because of ongoing brain injury associated with the HIV infection, despite their apparent stable clinical course. Ann Neurol 2009;65:316,325 [source] |