Home About us Contact | |||
Quantitative Relationships (quantitative + relationships)
Selected AbstractsA new crosslinked protein fiber from gliadin and the effect of crosslinking parameters on its mechanical properties and water stabilityPOLYMER INTERNATIONAL, Issue 10 2008Ying Li Abstract BACKGROUND: Although several cereal proteins have been used to develop fibers and films, it has not been possible to obtain protein materials with good mechanical properties and water stability, even after crosslinking. Previously, high concentrations of glutaraldehyde were used to improve the mechanical properties of protein fibers but the effect of crosslinking conditions on the properties of the crosslinked materials has not been studied in detail. RESULTS: Low concentrations of glutaraldehyde can be used to improve the mechanical properties and water stability of gliadin fibers. Quantitative relationships that can predict the breaking tenacity of the fibers at various crosslinking conditions are developed. Glutaraldehyde crosslinking is more resistant to hydrolysis in neutral pH than under acidic conditions in terms of increasing and retaining the breaking tenacity. The crosslinked fibers show improved resistance to hydrolysis over poly(lactic acid) fibers in aqueous dispersions at pH = 4 and 7 at 50 and 90 °C, respectively. CONCLUSIONS: This study shows that low concentrations of glutaraldehyde can impart excellent mechanical properties to gliadin fibers. The quantitative relationships developed can be used to select the crosslinking conditions such low glutaraldehyde concentration and high temperature or vice versa to obtain the desired improvement in mechanical properties or water stability. Copyright © 2008 Society of Chemical Industry [source] Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flowsFRESHWATER BIOLOGY, Issue 1 2010N. LEROY POFF Summary 1.,In an effort to develop quantitative relationships between various kinds of flow alteration and ecological responses, we reviewed 165 papers published over the last four decades, with a focus on more recent papers. Our aim was to determine if general relationships could be drawn from disparate case studies in the literature that might inform environmental flows science and management. 2.,For all 165 papers we characterised flow alteration in terms of magnitude, frequency, duration, timing and rate of change as reported by the individual studies. Ecological responses were characterised according to taxonomic identity (macroinvertebrates, fish, riparian vegetation) and type of response (abundance, diversity, demographic parameters). A ,qualitative' or narrative summary of the reported results strongly corroborated previous, less comprehensive, reviews by documenting strong and variable ecological responses to all types of flow alteration. Of the 165 papers, 152 (92%) reported decreased values for recorded ecological metrics in response to a variety of types of flow alteration, whereas 21 papers (13%) reported increased values. 3.,Fifty-five papers had information suitable for quantitative analysis of ecological response to flow alteration. Seventy per cent of these papers reported on alteration in flow magnitude, yielding a total of 65 data points suitable for analysis. The quantitative analysis provided some insight into the relative sensitivities of different ecological groups to alteration in flow magnitudes, but robust statistical relationships were not supported. Macroinvertebrates showed mixed responses to changes in flow magnitude, with abundance and diversity both increasing and decreasing in response to elevated flows and to reduced flows. Fish abundance, diversity and demographic rates consistently declined in response to both elevated and reduced flow magnitude. Riparian vegetation metrics both increased and decreased in response to reduced peak flows, with increases reflecting mostly enhanced non-woody vegetative cover or encroachment into the stream channel. 4.,Our analyses do not support the use of the existing global literature to develop general, transferable quantitative relationships between flow alteration and ecological response; however, they do support the inference that flow alteration is associated with ecological change and that the risk of ecological change increases with increasing magnitude of flow alteration. 5.,New sampling programs and analyses that target sites across well-defined gradients of flow alteration are needed to quantify ecological response and develop robust and general flow alteration,ecological response relationships. Similarly, the collection of pre- and post-alteration data for new water development programs would significantly add to our basic understanding of ecological responses to flow alteration. [source] A model for pore-fluid-sensitive rock behavior using a weathering state parameterINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 16 2008R. J. Hickman Abstract Chalk and other porous rocks are known to behave differently when saturated with different pore fluids. The behavior of these rocks varies with different pore fluids and additional deformation occurs when the pore fluid composition changes. In this article, we review the evidence that behavior in porous rocks is pore-fluid-dependent, present a constitutive model for pore-fluid-dependent porous rocks, and present a compilation of previously published data to develop quantitative relationships between various pore fluids and mechanical behavior. The model proposed here is based on a state parameter approach for weathering and has similarities to models previously proposed for weathering-sensitive rocks in that the values for parameters that characterize material behavior vary as a function of weathering. Comparisons with published experimental data indicate that the model is capable of reproducing observed behavior of chalk under a variety of loading conditions and changes in pore fluid composition. Copyright © 2008 John Wiley & Sons, Ltd. [source] Size-dependent predation risk in tree-feeding insects with different colouration strategies: a field experimentJOURNAL OF ANIMAL ECOLOGY, Issue 5 2009Triinu Remmel Summary 1. Body size is positively correlated with fecundity in various animals, but the factors that counterbalance the resulting selection pressure towards large size are difficult to establish. Positively size-dependent predation risk has been proposed as a selective factor potentially capable of balancing the fecundity advantage of large size. 2. To construct optimality models of insect body size, realistic estimates of size-dependent predation rates are necessary. Moreover, prey traits such as colouration should be considered, as they may substantially alter the relationship between body size and mortality risk. 3. To quantify mortality patterns, we conducted field experiments in which we exposed cryptic and conspicuous artificial larvae of different sizes to bird predators, and recorded the incidence of bird attacks. 4. The average daily mortality rate was estimated to vary between 4% and 10%. In both cryptic and conspicuous larvae, predation risk increased with prey size, but the increase tended to be steeper in the conspicuous group. No main effect of colour type was found. All the quantitative relationships were reasonably consistent across replicates. 5. Our results suggest that the size dependence of mortality risk in insect prey is primarily determined by the probability of being detected by a predator rather than by a size-dependent warning effect associated with conspicuous colouration. Our results therefore imply that warningly coloured insects do not necessarily benefit more than the cryptic species from large body size, as has been previously suggested. [source] Nucleus pulposus glycosaminoglycan content is correlated with axial mechanics in rat lumbar motion segmentsJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 9 2006John I. Boxberger Abstract The unique biochemical composition and structure of the intervertebral disc allow it to support load, permit motion, and dissipate energy. With degeneration, both the biochemical composition and mechanical behavior of the disc are drastically altered, yet quantitative relationships between the biochemical changes and overall motion segment mechanics are lacking. The objective of this study was to determine the contribution of nucleus pulposus glycosaminoglycan content, which decreases with degeneration, to mechanical function of a rat lumbar spine motion segment in axial loading. Motion segments were treated with varying doses of Chondroitinase-ABC (to degrade glycosaminoglycans) and loaded in axial cyclic compression-tension, followed by compressive creep. Nucleus glycosaminoglycan content was significantly correlated (p,<,0.05) with neutral zone mechanical behavior, which occurs in low load transition between tension and compression (stiffness: r,=,0.59; displacement: r,=,,0.59), and with creep behavior (viscous parameter ,1: r,=,0.34; short time constant ,1: r,=,0.46). These results indicate that moderate decreases in nucleus glycosaminoglycan content consistent with early human degeneration affect overall mechanical function of the disc. These decreases may expose the disc to altered internal stress and strain patterns, thus contributing through mechanical or biological mechanisms to the degenerative cascade. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res [source] Stomatal crypts may facilitate diffusion of CO2 to adaxial mesophyll cells in thick sclerophyllsPLANT CELL & ENVIRONMENT, Issue 11 2009FOTEINI HASSIOTOU ABSTRACT In some plants, stomata are exclusively located in epidermal depressions called crypts. It has been argued that crypts function to reduce transpiration; however, the occurrence of crypts in species from both arid and wet environments suggests that crypts may play another role. The genus Banksia was chosen to examine quantitative relationships between crypt morphology and leaf structural and physiological traits to gain insight into the functional significance of crypts. Crypt resistance to water vapour and CO2 diffusion was calculated by treating crypts as an additional boundary layer partially covering one leaf surface. Gas exchange measurements of polypropylene meshes confirmed the validity of this approach. Stomatal resistance was calculated as leaf resistance minus calculated crypt resistance. Stomata contributed significantly more than crypts to leaf resistance. Crypt depth increased and accounted for an increasing proportion of leaf resistance in species with greater leaf thickness and leaf dry mass per area. All Banksia species examined with leaves thicker than 0.6 mm had their stomata in deep crypts. We propose that crypts function to facilitate CO2 diffusion from the abaxial surface to adaxial palisade cells in thick leaves. This and other possible functions of stomatal crypts, including a role in water use, are discussed. [source] |