Quadruple Mutant (quadruple + mutant)

Distribution by Scientific Domains


Selected Abstracts


Leptin and endothelin-1 mediated increased extracellular matrix protein production and cardiomyocyte hypertrophy in diabetic heart disease

DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 5 2009
Pijush Majumdar
Abstract Background We investigated the role of leptin and its interaction with endothelin 1 (ET-1) in fibronectin (FN) synthesis and cardiomyocyte hypertrophy, two characteristic features of diabetic cardiomyopathy. Methods Endothelial cells [human umbilical vein endothelial cells (HUVECs)] were examined for FN production and neonatal rat cardiomyocytes for hypertrophy, following incubation with glucose, ET-1, leptin and specific blockers. FN, ET-1, leptin and leptin receptors mRNA expression and FN protein were measured. Myocytes were also morphometrically examined. Furthermore, hearts from streptozotocin-diabetic rats were analysed. Results Glucose caused increased FN mRNA and protein expression in HUVECs and cardiomyocytes hypertrophy along with upregulation of ET-1 mRNA, leptin mRNA and protein. Glucosemimetic effects were seen with leptin and ET-1. Leptin receptor antagonist (leptin quadruple mutant) and dual endothelin A endothelin B (ETA/ETB) receptor blocker bosentan normalized such abnormalities. Hearts from the diabetic animals showed hypertrophy and similar mRNA changes. Conclusion These data indicate that in diabetes increased FN production and cardiomyocyte hypertrophy may be mediated through leptin with its interaction with ET-1. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Interactive signalling by phytochromes and cryptochromes generates de-etiolation homeostasis in Arabidopsis thaliana

PLANT CELL & ENVIRONMENT, Issue 2 2001
M. A. Mazzella
ABSTRACT Single, double, triple and quadruple mutants of phyA, phyB, cry1 and cry2 were exposed to different sunlight irradiances and photoperiods to investigate the roll played by phytochrome A, phytochrome B, cryptochrome 1 and cryptochrome 2 during de-etiolation of Arabidopsis thaliana seedlings under natural radiation. Even the quadruple mutant retained some hypocotyl-growth inhibition by sunlight. Hypocotyl length was strongly affected by interactions among photoreceptors. Double phyA phyB, phyA cry1, and cry1 cry2 mutants were taller than expected from the additive action of single mutations. Some of these redundant interactions required the presence of phytochromes A and/or B. Interactions among photoreceptors resulted in a 44% reduction of the response to irradiance and a 70% reduction of the response to photoperiod. The complex network of interactions among photoreceptors is proposed to buffer de-etiolation against changes in irradiance and photoperiod, i.e light fluctuations not related to the positions of the shoot above or below soil level [source]


Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses

THE PLANT JOURNAL, Issue 2 2010
Mark Zander
Summary The three closely related Arabidopsis basic leucine zipper (bZIP) transcription factors TGA2, TGA5 and TGA6 are required for the establishment of the salicylic acid (SA)-dependent plant defense response systemic acquired resistance, which is effective against biotrophic pathogens. Here we show that the same transcription factors are essential for the activation of jasmonic acid (JA)- and ethylene (ET)-dependent defense mechanisms that counteract necrotrophic pathogens: the tga256 triple mutant is impaired in JA/ET-induced PDF1.2 and b-CHI expression, which correlates with a higher susceptibility against the necrotroph Botrytis cinerea. JA/ET induction of the trans -activators ERF1 and ORA59, which act upstream of PDF1.2, was slightly increased (ERF1) or unaffected (ORA59). PDF1.2 expression can be restored in the tga256 mutant by increased expression of ORA59, as observed in the tga256 jin1 quadruple mutant, which lacks the transcription factor JIN1/AtMYC2 that functions as a negative regulator of the JA/ET-dependent anti-fungal defense program. Whereas JA/ET-induced PDF1.2 expression is strongly suppressed by SA in wild-type plants, no negative effect of SA on PDF1.2 expression was observed in the tga256 jin1 quadruple mutant. These results imply that the antagonistic effects of TGA factors and JIN1/AtMYC2 on the JA/ET pathway are necessary to evoke the SA-mediated suppression of JA/ET-induced defense responses. [source]


Mutation of surface residues to promote crystallization of activated factor XI as a complex with benzamidine: an essential step for the iterative structure-based design of factor XI inhibitors

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 10 2005
Pramod Pandey
Activated factor XI (FXIa) is a key enzyme in the amplification phase of the blood-coagulation cascade. Thus, a selective FXIa inhibitor may have lesser bleeding liabilities and provide a safe alternative for antithrombosis therapy to available drugs on the market. In a previous report, the crystal structures of the catalytic domain of FXIa (rhFXI370,607) in complex with various ecotin mutants have been described [Jin et al. (2005), J. Biol. Chem.280, 4704,4712]. However, ecotin forms a matrix-like interaction with rhFXI370,607 and is impossible to displace with small-molecule inhibitors; ecotin crystals are therefore not suitable for iterative structure-based ligand design. In addition, rhFXI370,607 did not crystallize in the presence of small-molecule ligands. In order to obtain the crystal structure of rhFXI370,607 with a weak small-molecule ligand, namely benzamidine, several rounds of surface-residue mutation were implemented to promote crystal formation of rhFXI370,607. A quadruple mutant of rhFXI370,607 (rhFXI370,607 -S434A,T475A,C482S,K437A) readily crystallized in the presence of benzamidine. The benzamidine in the preformed crystals was easily exchanged with other FXIa small-molecule inhibitors. These crystals have facilitated the structure-based design of small-molecule FXIa inhibitors. [source]


Interactive signalling by phytochromes and cryptochromes generates de-etiolation homeostasis in Arabidopsis thaliana

PLANT CELL & ENVIRONMENT, Issue 2 2001
M. A. Mazzella
ABSTRACT Single, double, triple and quadruple mutants of phyA, phyB, cry1 and cry2 were exposed to different sunlight irradiances and photoperiods to investigate the roll played by phytochrome A, phytochrome B, cryptochrome 1 and cryptochrome 2 during de-etiolation of Arabidopsis thaliana seedlings under natural radiation. Even the quadruple mutant retained some hypocotyl-growth inhibition by sunlight. Hypocotyl length was strongly affected by interactions among photoreceptors. Double phyA phyB, phyA cry1, and cry1 cry2 mutants were taller than expected from the additive action of single mutations. Some of these redundant interactions required the presence of phytochromes A and/or B. Interactions among photoreceptors resulted in a 44% reduction of the response to irradiance and a 70% reduction of the response to photoperiod. The complex network of interactions among photoreceptors is proposed to buffer de-etiolation against changes in irradiance and photoperiod, i.e light fluctuations not related to the positions of the shoot above or below soil level [source]