Home About us Contact | |||
Quadratic Gaussian (quadratic + gaussian)
Kinds of Quadratic Gaussian Selected AbstractsProbabilistic Approach for Nonlinear Modal Control of MDOF Structures Subjected to Multiple ExcitationsCOMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, Issue 1 2005Kyung-Won Min For the modal control of the MDOF structure, a new eigenvalue assignment algorithm that modifies the dynamic characteristics of only the specific mode is proposed. For the probabilistic evaluation of the proposed nonlinear modal control, the joint probability density function (PDF) of the equivalent nonlinearly controlled single-degree-of-freedom (SDOF) system is obtained by the solution of the reduced Fokker,Planck equation for the equivalent nonlinear system. To overcome the difficulty in the application of the joint PDF to the MDOF structure controlled by the hybrid mass damper (HMD) system and subjected to multiple excitations, the equivalent damping ratio is proposed. The results of the analysis indicate that the proposed nonlinear modal control strategy is effective for the control of MDOF structures requiring a significantly smaller peak control force than the linear quadratic Gaussian (LQG) controller to produce a similar control performance level. [source] Closed-form solution for seismic response of adjacent buildings with linear quadratic Gaussian controllersEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 2 2002Y. L. Xu Abstract Closed-form solution for seismic response of adjacent buildings connected by hydraulic actuators with linear quadratic Gaussian (LQG) controllers is presented in this paper. The equations of motion of actively controlled adjacent buildings against earthquake are first established. The complex modal superposition method is then used to determine dynamic characteristics, including modal damping ratio, of actively controlled adjacent buildings. The closed-form solution for seismic response of the system is finally derived in terms of the complex dynamic characteristics, the pseudo-excitation method and the residue theorem. By using the closed-form solution, extensive parametric studies can be carried out for the system of many degrees of freedom. The beneficial parameters of LQG controllers for achieving the maximum response reduction of both buildings using reasonable control forces can be identified. The effectiveness of LQG controllers for this particular application is evaluated in this study. The results show that for the adjacent buildings of different dynamic properties, if the parameters of LQG controllers are selected appropriately, the modal damping ratios of the system can be significantly increased and the seismic responses of both buildings can be considerably reduced. Copyright © 2001 John Wiley & Sons, Ltd. [source] Application of model-free LQG subspace predictive control to TCP congestion controlINTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 6 2008Belinda A. Chiera Abstract We investigate the application of a model-free linear quadratic Gaussian (LQG) subspace-based predictive controller to Internet congestion control. Specifically, we consider a classically designed LQG linear congestion controller with a non-standard performance index and determine whether a model-free controller is a viable alternative in this instance. We employ the model-free subspace predictive controller methodology which we customize for end-to-end transmission control protocol (TCP) congestion control. A series of network simulations support the use of the more easily implementable model-free controller over its classical analogue. We further demonstrate that the model-free controller provides increased stability under transient network conditions when compared with the first feedback congestion controller, TCP Vegas. Copyright © 2007 John Wiley & Sons, Ltd. [source] Optimality for the linear quadratic non-Gaussian problem via the asymmetric Kalman filterINTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 1 2004Rosario Romera Abstract In the linear non-Gaussian case, the classical solution of the linear quadratic Gaussian (LQG) control problem is known to provide the best solution in the class of linear transformations of the plant output if optimality refers to classical least-squares minimization criteria. In this paper, the adaptive linear quadratic control problem is solved with optimality based on asymmetric least-squares approach, which includes least-squares criteria as a special case. Our main result gives explicit solutions for this optimal quadratic control problem for partially observable dynamic linear systems with asymmetric observation errors. The main difficulty is to find the optimal state estimate. For this purpose, an asymmetric version of the Kalman filter based on asymmetric least-squares estimation is used. We illustrate the applicability of our approach with numerical results. Copyright © 2004 John Wiley & Sons, Ltd. [source] Joint control for flexible-joint robot with input-estimation approach and LQG methodOPTIMAL CONTROL APPLICATIONS AND METHODS, Issue 2 2008Chien-Yu Ji Abstract In this work, the input-estimation (IE) algorithm and the linear quadratic Gaussian (LQG) controller are adopted to design a control system. The combined method can maintain higher control performance even when the system variation is unknown and under the influence of disturbance input. The IE algorithm is an on-line inverse estimation method involving the Kalman filter (KF) and the least-square method, which can estimate the system input without additional torque sensor, while the LQG control theory has the characteristic of low sensitivity of disturbance. The design and analysis processes of the controller will also be discussed in this paper. The joint control of the flexible-joint robot system is utilized to test and verify the effectiveness of the control performance. According to the simulation results, the IE algorithm is an effective observer for estimating the disturbance torque input, and the LQG controller can effectively cope with the situation that the disturbance exists. Finally, higher control performance of the combined method for joint control of the robotic system can be further verified. Copyright © 2007 John Wiley & Sons, Ltd. [source] Optimal control of fuel processing system using generalized linear quadratic Gaussian and loop transfer recovery method,,ASIAN JOURNAL OF CONTROL, Issue 5 2010Huan-Liang Tsai Abstract This paper proposes an optimal control system that consists of both feedforward and state-feedback controllers designed using a generalized linear quadratic Gaussian and loop transfer recovery (GLQG/LTR) method for a fuel processing system (FPS). This FPS uses natural gas as fuel and reacts with atmospheric air through a catalytic partial oxidation (CPO) response. The control objective is focused on the regulatory performance of the output vector in response to a desired stack current command in the face of load variation. The proposed method provides another degree of freedom in the optimal control design and gives the compensated system a prescribed degree of stability. Finally, the numerical simulations of compensated FPS reveal that the proposed method displays better performance and robustness properties in both time-domain and frequency-domain responses than those obtained by the traditional LQ Method. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society [source] Optimal linear LQG control over lossy networks without packet acknowledgmentASIAN JOURNAL OF CONTROL, Issue 1 2008Bruno Sinopoli Abstract This paper is concerned with control applications over lossy data networks. Sensor data is transmitted to an estimation-control unit over a network, and control commands are issued to subsystems over the same network. Sensor and control packets may be randomly lost according to a Bernoulli process. In this context, the discrete-time linear quadratic Gaussian (LQG) optimal control problem is considered. It is known that in the scenario described above, and for protocols for which there is no acknowledgment of successful delivery of control packets (e.g. UDP-like protocols), the LQG optimal controller is in general nonlinear. However, the simplicity of a linear sub-optimal solution is attractive for a variety of applications. Accordingly, this paper characterizes the optimal linear static controller and compares its performance to the case when there is acknowledgment of delivery of packets (e.g. TCP-like protocols). Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society [source] |