QTL Regions (qtl + regions)

Distribution by Scientific Domains


Selected Abstracts


Genetic aspects concerning drip loss and water-holding capacity of porcine meat

JOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 2007
D. G. J. Jennen
Summary The amount and distribution of water inside the meat has a considerable influence on its properties. High losses of fluid in the form of drip may affect financial output, nutritional value, consumer appeal and/or technological properties of porcine meat. Therefore, a deeper insight into the traits water-holding capacity (WHC) and drip is favourable on behalf of producers, industry and consumers. Similar to most meat quality traits, WHC and drip loss (DRIP) are moderately heritable. The genetic correlation between these two traits is high. Correlation to other meat quality traits, such as pH value, cooking loss, reflectance, etc. is existent as predictable. Two major genes are known, RYR1 on chromosome 6 and RN on chromosome 15, to influence meat quality in general and WHC in particular. Furthermore, a number of candidate genes exist, e.g. phosphoglycerate mutase 2. Within the variety of quantitative trait loci (QTL) experiments, a number of QTL have been identified. QTL for DRIP and/or WHC have been found on chromosome 1, 2, 4, 5, 6, 11, 13, 14, 15, 18; for cooking loss on 7, 14 and18, and for pH value on nearly all chromosomes. Recently, a QTL study for meat quality and body composition traits in a Duroc,Pietrain (DUPI) resource population has been conducted at the University of Bonn, Germany. Four QTL for DRIP were identified on chromosomes 2, 3, 5 and 18. The QTL regions are in agreement with previously published QTL for this and other related traits. Further research and finemapping has begun and candidate genes located within the QTL regions are currently under investigation. Combination and comparison of results should lead to deeper insights in the genetic background of meat quality and DRIP. [source]


Congenic Strains of Mice for Verification and Genetic Decomposition of Quantitative Trait Loci for Femoral Bone Mineral Density,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2003
Kathryn L Shultz
Abstract Peak femoral volumetric bone mineral density (femoral bone mineral density) in C57BL/6J (B6) 4-month-old female mice is 50% lower than in C3H/HeJ (C3H) and 34% lower than in CAST/EiJ (CAST) females. Genome-wide analyses of (B6 C3H)F2 and (B6 CAST)F2 4-month-old female progeny demonstrated that peak femoral bone mineral density is a complex quantitative trait associated with genetic loci (QTL) on numerous chromosomes (Chrs) and with trait heritabilities of 83% (C3H) and 57% (CAST). To test the effect of each QTL on femoral bone mineral density, two sets of loci (six each from C3H and CAST) were selected to make congenic strains by repeated backcrossing of donor mice carrying a given QTL-containing chromosomal region to recipient mice of the B6 progenitor strain. At the N6F1 generation, each B6.C3H and B6.CAST congenic strain (statistically 98% B6-like in genomic composition) was intercrossed to obtain N6F2 progeny for testing the effect of each QTL on femoral bone mineral density. In addition, the femoral bone mineral density QTL region on Chr 1 of C3H was selected for congenic subline development to facilitate fine mapping of this strong femoral bone mineral density locus. In 11 of 12 congenic strains, 6 B6.C3H and 5 B6.CAST, femoral bone mineral density in mice carrying c3h or cast alleles in the QTL regions was significantly different from that of littermates carrying b6 alleles. Differences also were observed in body weight, femoral length, and mid-diaphyseal periosteal circumference among these 11 congenic strains when compared with control littermates; however, these latter three phenotypes were not consistently correlated with femoral bone mineral density. Analyses of eight sublines derived from the B6.C3H-1T congenic region revealed two QTLs: one located between 36.9 and 49.7 centiMorgans (cM) and the other located between 73.2 and 100.0 cM distal to the centromere. In conclusion, these congenic strains provide proof of principle that many QTLs identified in the F2 analyses for femoral bone mineral density exert independent effects when transferred and expressed in a common genetic background. Furthermore, significant differences in femoral bone mineral density among the congenic strains were not consistently accompanied by changes in body weight, femur length, or periosteal circumference. Finally, decomposition of QTL regions by congenic sublines can reveal additional loci for phenotypes assigned to a QTL region and can markedly refine genomic locations of quantitative trait loci, providing the opportunity for candidate gene testing. [source]


Fine Mapping of Polymorphic Alcohol-Related Quantitative Trait Loci Candidate Genes Using Interval-Specific Congenic Recombinant Mice

ALCOHOLISM, Issue 11 2002
Marissa A. Ehringer
Background The inbred long-sleep (ILS) and inbred short-sleep (ISS) strains of mice are widely studied as a model of initial sensitivity to alcohol. Recently, a large comparative DNA sequencing study of candidate genes located within the four Lore quantitative trait loci (QTLs) associated with the ethanol-induced loss of righting reflex in ILS and ISS mice has identified eight genes that contain coding region differences corresponding to amino acid changes. Here, recently developed interval-specific congenic recombinant mice (ISCRs) have been used to map these genes in relationship to newly narrowed QTL regions. Methods Regions of candidate genes containing DNA differences corresponding to previously identified amino acid changes between ISS and ILS mice were amplified from either genomic DNA or complementary DNA from ISCR mice using polymerase chain reaction. The products were purified and directly sequenced to determine the genotypes for each polymorphism. On the basis of these genotypic data, each candidate gene was determined to be located either within or outside of recently narrowed Lore QTL intervals. Results Of these eight candidates with protein-coding differences, five are now excluded from their respective Lore intervals. The other three (Znf142, Ptprn, and Znf133) have been localized to the narrowed QTL intervals. Conclusions These three central nervous system genes (Znf142, Ptprn, and Znf133) represent promising candidates for involvement in the differential sensitivity to alcohol exhibited between ILS and ISS mice. This study also demonstrates how the combination of high-throughput comparative gene sequencing and concomitant genetic fine mapping of QTL regions with ISCRs can be an effective tool for accelerating the process of moving from QTL to gene. [source]


Natural genetic variation in whole-genome expression in Arabidopsis thaliana: the impact of physiological QTL introgression

MOLECULAR ECOLOGY, Issue 5 2006
THOMAS E. JUENGER
Abstract A long-standing and fundamental question in biology is how genes influence complex phenotypes. Combining near-isogenic line mapping with genome expression profiling offers a unique opportunity for exploring the functional relationship between genotype and phenotype and for generating candidate genes for future study. We used a whole-genome microarray produced with ink-jet technology to measure the relative expression level of over 21 500 genes from an Arabidopsis thaliana near-isogenic line (NIL) and its recurrent parent. The NIL material contained two introgressions (bottom of chromosome II and top of chromosome III) of the Cvi-1 ecotype in a Ler -2 ecotype genome background. Each introgression ,captures' a Cvi allele of a physiological quantitative trait loci (QTL) that our previous studies have shown increases transpiration and reduces water-use efficiency at the whole-plant level. We used a mixed model anova framework for assessing sources of expression variability and for evaluating statistical significance in our array experiment. We discovered 25 differentially expressed genes in the introgression at a false-discovery rate (FDR) cut-off of 0.20 and identified new candidate genes for both QTL regions. Several differentially expressed genes were confirmed with QRT,PCR (quantitative reverse transcription,polymerase chain reaction) assays. In contrast, we found no statistically significant differentially expressed genes outside of the QTL introgressions after controlling for multiple tests. We discuss these results in the context of candidate genes, cloning QTL, and phenotypic evolution. [source]


Genetic mapping of quantitative trait loci for milk production in sheep

ANIMAL GENETICS, Issue 5 2010
R. G. Mateescu
Summary A backcross pedigree using dairy East Friesian rams and non-dairy Dorset ewes was established specifically to map quantitative trait loci (QTL) affecting milk production in sheep. Ninety nine microsatellite markers of an initial set of 120 were successfully genotyped and informative on 188 animals of this backcross pedigree. Test-day milk records on individual ewes were used to estimate several milk yield related traits, including peak milk yield and cumulative milk yield to 50 (MY50), 100 (MY100) and 250 days (MY250). These traits, as well as estimated breeding value of backcross ewes extracted from the genetic evaluation file of the entire flock, were used in interval mapping. Ovine chromosomes 2, 12, 18, 20 and 24 were identified to harbour putative QTL for different measures of milk production. The QTL on Ovis aries chromosomes (OAR) 2 and 20 mapped to locations where similar trait QTL have already been mapped in other studies, whereas QTL on OAR 12, 18 and 24 were unique to our backcross pedigree and have not been reported previously. In addition, all identified QTL regions were syntenic with bovine chromosomal segments revealed to harbour QTL affecting milk production traits, providing supporting evidence for the QTL identified here. [source]


QTL mapping for two commercial traits in farmed saltwater crocodiles (Crocodylus porosus)

ANIMAL GENETICS, Issue 2 2010
L. G. Miles
Summary The recent generation of a genetic linkage map for the saltwater crocodile (Crocodylus porosus) has now made it possible to carry out the systematic searches necessary for the identification of quantitative trait loci (QTL) affecting traits of economic, as well as evolutionary, importance in crocodilians. In this study, we conducted genome-wide scans for two commercially important traits, inventory head length (which is highly correlated with growth rate) and number of scale rows (SR, a skin quality trait), for the existence of QTL in a commercial population of saltwater crocodiles at Darwin Crocodile Farm, Northern Territory, Australia. To account for the uncommonly large difference in sex-specific recombination rates apparent in the saltwater crocodile, a duel mapping strategy was employed. This strategy employed a sib-pair analysis to take advantage of our full-sib pedigree structure, together with a half-sib analysis to account for, and take advantage of, the large difference in sex-specific recombination frequencies. Using these approaches, two putative QTL regions were identified for SR on linkage group 1 (LG1) at 36 cM, and on LG12 at 0 cM. The QTL identified in this investigation represent the first for a crocodilian and indeed for any non-avian member of the Class Reptilia. Mapping of QTL is an important first step towards the identification of genes and causal mutations for commercially important traits and the development of selection tools for implementation in crocodile breeding programmes for the industry. [source]


Quantitative trait loci associated with fatness in a broiler,layer cross

ANIMAL GENETICS, Issue 5 2009
R. L. R. Campos
Summary An F2 population established by crossing a broiler male line and a layer line was used to map quantitative trait loci (QTL) affecting abdominal fat weight, abdominal fat percentage and serum cholesterol and triglyceride concentrations. Two genetic models, the line-cross and the half-sib, were applied in the QTL analysis, both using the regression interval method. Three significant QTL and four suggestive QTL were mapped in the line-cross analysis and four significant and four suggestive QTL were mapped in the half-sib analysis. A total of five QTL were mapped for abdominal fat weight, six for abdominal fat percentage and four for triglyceride concentration in both analyses. New QTL associated with serum triglyceride concentration were mapped on GGA5, GGA23 and GG27. QTL mapped between markers LEI0029 and ADL0371 on GGA3 for abdominal fat percentage and abdominal fat weight and a suggestive QTL on GGA12 for abdominal fat percentage showed significant parent-of-origin effects. Some QTL mapped here match QTL regions mapped in previous studies using different populations, suggesting good candidate regions for fine-mapping and candidate gene searches. [source]


Identification of chromosomal regions associated with growth and carcass traits in an F3 full sib intercross line originating from a cross of chicken lines divergently selected on body weight

ANIMAL GENETICS, Issue 5 2009
D. Ter
Summary An F3 resource population originating from a cross between two divergently selected lines for high (D+ line) or low (D, line) body weight at 8-weeks of age (BW55) was generated and used for Quantitative Trait Locus (QTL) mapping. From an initial cross of two founder F0 animals from D(+) and D(,) lines, progeny were randomly intercrossed over two generations following a full sib intercross line (FSIL) design. One hundred and seventy-five genome-wide polymorphic markers were employed in the DNA pooling and selective genotyping of F3 to identify markers with significant effects on BW55. Fifty-three markers on GGA2, 5 and 11 were then genotyped in the whole F3 population of 503 birds, where interval mapping with GridQTL software was employed. Eighteen QTL for body weight, carcass traits and some internal organ weights were identified. On GGA2, a comparison between 2-QTL vs. 1-QTL analysis revealed two separate QTL regions for body, feet, breast muscle and carcass weight. Given co-localization of QTL for some highly correlated traits, we concluded that there were 11 distinct QTL mapped. Four QTL localized to already mapped QTL from other studies, but seven QTL have not been previously reported and are hence novel and unique to our selection line. This study provides a low resolution QTL map for various traits and establishes a genetic resource for future fine-mapping and positional cloning in the advanced FSIL generations. [source]


Mapping of quantitative trait loci for clinical,chemical traits in swine

ANIMAL GENETICS, Issue 1 2009
G. Reiner
Summary Clinical,chemical traits are diagnostic parameters essential for characterization of health and disease in veterinary practice. The traits show significant variability and are under genetic control, but little is known about the fundamental genetic architecture of this variability, especially in swine. We have identified QTL for alkaline phosphatase (ALP), lactate (LAC), bilirubin (BIL), creatinine (CRE) and ionized sodium (Na+), potassium (K+) and calcium (Ca++) from the serum of 139 F2 pigs from a Meishan/Pietrain family before and after challenge with Sarcocystis miescheriana, a protozoan parasite of muscle. After infection, the pigs passed through three stages representing acute disease, subclinical disease and chronic disease. Forty-two QTL influencing clinical,chemical traits during these different stages were identified on 15 chromosomes. Eleven of the QTL were significant on a genome-wide level; 31 QTL were chromosome-wide significant. QTL showed specific health/disease patterns with respect to the baseline values of the traits as well as the values obtained through the different stages of disease. QTL influencing different traits at different times were found primarily on chromosomes 1, 3, 7 and 14. The most prominent QTL for the investigated clinical,chemical traits mapped to SSC3 and 7. Baseline traits of ALP, LAC, BIL, Ca++ and K+ were influenced by QTL regions on SSC3, 6, 7, 8 and 13. Single QTL explained up to 21.7% of F2 phenotypic variance. Our analysis confirms that variation of clinical,chemical traits is associated with multiple chromosomal regions. [source]


Quantitative trait loci with additive effects on palatability and fatty acid composition of meat in a Wagyu,Limousin F2 population

ANIMAL GENETICS, Issue 5 2007
L. J. Alexander
Summary A whole-genome scan was conducted on 328 F2 progeny in a Wagyu Limousin cross to identify quantitative trait loci (QTL) affecting palatability and fatty acid composition of beef at an age-constant endpoint. We have identified seven QTL on five chromosomes involved in lipid metabolism and tenderness. None of the genes encoding major enzymes involved in fatty acid metabolism, such as fatty acid synthase (FASN), acetyl-CoA carboxylase alpha (ACACA), solute carrier family 2 (facilitated glucose transporter) member 4 (SLC2A4), stearoyl-CoA desaturase (SCD) and genes encoding the subunits of fatty acid elongase, was located in these QTL regions. The present study may lead to a better-tasting and healthier product for consumers through improved selection for palatability and lipid content of beef. [source]


Linkage mapping of the porcine cathepsin F (CTSF) gene close to the QTL regions for meat and fat deposition traits on pig chromosome 2

ANIMAL GENETICS, Issue 2 2004
V. Russo
No abstract is available for this article. [source]


Congenic Rats For Hypertension: How Useful Are They For The Hunting Of Hypertension Genes?

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 4 2000
Toru Nabika
SUMMARY 1. Linkage studies have revealed quantitative trait loci (QTL) for blood pressure in the rat genome using genetic hypertensive rat models. To identify the genes responsible for hypertension, the construction of congenic rats is essential. 2. To date, several congenic strains have been obtained from spontaneously hypertensive or Dahl salt-sensitive rats. The results of these studies should be interpreted according to whether the rats carry the whole QTL region or not. 3. After establishing congenic strains, three strategies are possible: (i) an orthodox positional cloning in which, using subcongenic strains, the QTL region is cut down to smaller fragments suitable for physical mapping; (ii) a positional candidate strategy in which candidate genes in the QTL regions are studied; or (iii) physiological studies in which intermediate phenotypes directly associated with the hypertension gene are explored. Several other experimental strategies are also available using congenic strains as new animal models for hypertension. 4. To make the most of advances in DNA technology, the precise evaluation of the phenotypic difference between congenic strains carrying different QTL or between a congenic and parental strain is critical. [source]