Putative Sites (putative + site)

Distribution by Scientific Domains


Selected Abstracts


Oxygen sensing in hypoxic pulmonary vasoconstriction: using new tools to answer an age-old question

EXPERIMENTAL PHYSIOLOGY, Issue 1 2008
Gregory B. Waypa
Hypoxic pulmonary vasoconstriction (HPV) becomes activated in response to alveolar hypoxia and, although the characteristics of HPV have been well described, the underlying mechanism of O2 sensing which initiates the HPV response has not been fully established. Mitochondria have long been considered as a putative site of oxygen sensing because they consume O2 and therefore represent the intracellular site with the lowest oxygen tension. However, two opposing theories have emerged regarding mitochondria-dependent O2 sensing during hypoxia. One model suggests that there is a decrease in mitochondrial reactive oxygen species (ROS) levels during the transition from normoxia to hypoxia, resulting in the shift in cytosolic redox to a more reduced state. An alternative model proposes that hypoxia paradoxically increases mitochondrial ROS signalling in pulmonary arterial smooth muscle. Experimental resolution of the question of whether the mitochondrial ROS levels increase or decrease during hypoxia has been problematic owing to the technical limitations of the tools used to assess oxidant stress as well as the pharmacological agents used to inhibit the mitochondrial electron transport chain. However, recent developments in genetic techniques and redox-sensitive probes may allow us eventually to reach a consensus concerning the O2 sensing mechanism underlying HPV. [source]


The circulative pathway of begomoviruses in the whitefly vector Bemisia tabaci, insights from studies with Tomato yellow leaf curl virus

ANNALS OF APPLIED BIOLOGY, Issue 3 2002
HENRYK CZOSNEK
Summary Our current knowledge concerning the transmission of begomoviruses by the whitefly vector Bemisia tabaci is based mainly on research performed on the Tomato yellow leaf curl virus (TYLCV) complex and on a number of viruses originating from the Old World, such as Tomato leaf curl virus, and from the New World, including Abutilon mosaic virus, Tomato mottle virus, and Squash leaf curl virus. In this review we discuss the characteristics of acquisition, transmission and retention of begomoviruses by the whitefly vector, concentrating on the TYLCV complex, based on both published and recent unpublished data. We describe the cells and organs encountered by begomoviruses in B. tabaci. We show immunolocalisation of TYLCV to the B. tabaci stylet food canal and to the proximal part of the descending midgut, and TYLCV-specific labelling was also associated with food in the lumen. The microvilli and electron-dense material in the epithelial cells of the gut wall were also labelled by the anti TYLCV serum, pointing to a possible virus translocation route through the gut wall and to a putative site of long-term virus storage. We describe the path of begomoviruses in their vector B. tabaci and in the non-vector whitefly Trialeurodes vaporariorum, and we follow the rate of virus translocation in these insects. We discuss TYLCV transmission between B. tabaci during mating, probably by exchange of haemolymph. We show that following a short acquisition access to infected tomato plants, TYLCV remains associated with the B. tabaci vector for weeks, while the virus is undetectable after a few hours in the non-vector T. vaporariorum. The implications of the long-term association of TYLCV with B. tabaci in the light of interactions of the begomovirus with insect receptors are discussed. [source]


E2F1 represses ,-catenin/TCF activity by direct up-regulation of Siah1

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 8b 2009
Wei Xie
Abstract Transcription factor E2F1 is a key regulator of cell proliferation and apoptosis. Its activity is strictly controlled by the pRB/E2F pathway. In the majority of cancer cells, however, this pathway is frequently found deregulated, and the underlying mechanism involving transcriptional control by E2F1 has not yet been fully elucidated. Here we report the identification of two putative E2F1-binding sites located upstream from Siah1 transcription start site (+1). Chromatin immunoprecipitation assay reveals that transcription factor E2F1 is capable of binding to the putative sites, and luciferase reporter assay shows that E2F1 can activate transcription from the Siah1 promoter. Ectopic expression of E2F1 elevates the Siah1 level, hence suppressing the ,-catenin/TCF activity. Consistently, knock-down of endogenous E2F1 by a shRNA strategy results in reduced expression of Siah1. Moreover, repression of ,-catenin/TCF activity by E2F1 can be attenuated by shRNA-based repression of endogenous Siah1, implying that Siah1 is a bona fide E2F1 target gene, which at least partly, mediates the suppression of ,-catenin/TCF signalling pathway. [source]


Mapping and characterization of B cell linear epitopes in the conservative regions of hepatitis C virus envelope glycoproteins

JOURNAL OF VIRAL HEPATITIS, Issue 3 2002
L. V. Olenina
Forty-eight overlapping octapeptides covering highly conservative regions of E1 and E2 hepatitis C virus (HCV) envelope proteins were synthesized and tested by ELISA against different groups of sera obtained from HCV-infected patients. All sera from patients with acute infection, except a single case of serum reactivity with the region HINRTALN, were nonreactive with any peptide. Sera obtained from chronic patients reacted with 12 peptides from five selected regions. Two immunodominant B epitopes were found, one being the precisely mapped antigenic site RMAWDM positioned inside the earlier shown immunodominant epitope from E1, and the second site, PALSTGLIH from E2, detected for the first time. New minor antigenic site was determined as PTDCFRKH from E2. We found only minor seroreactivity for one of the putative sites involved in CD81 binding, PYCWHYAP. [source]


Identifying Putative Promoter Regions of Hermansky-Pudlak Syndrome Genes by Means of Phylogenetic Footprinting

ANNALS OF HUMAN GENETICS, Issue 4 2009
Horia Stanescu
Summary HPS is an autosomal recessive disorder characterized by oculocutaneous albinism and prolonged bleeding. Eight human genes are described resulting in the HPS subtypes 1,8. Certain HPS proteins combine to form Biogenesis of Lysosome-related Organelles Complexes (BLOCs), thought to function in the formation of intracellular vesicles such as melanosomes, platelet dense bodies, and lytic granules. Specifically, BLOC-2 contains the HPS3, HPS5 and HPS6 proteins. We used phylogenetic footprinting to identify conserved regions in the upstream sequences of HPS3, HPS5 and HPS6. These conserved regions were verified to have in vitro transcription activation activity using luciferase reporter assays. Transcription factor binding site analyses of the regions identified 52 putative sites shared by all three genes. When analysis was limited to the conserved footprints, seven binding sites were found shared among all three genes: Pax-5, AIRE, CACD, ZF5, Zic1, E2F and Churchill. The HPS3 conserved upstream region was sequenced in four patients with decreased fibroblast HPS3 RNA levels and only one HPS3 mutation in the coding exons and surrounding exon/intron boundaries; no mutation was found. These findings illustrate the power of phylogenetic footprinting for identifying potential regulatory regions in non-coding sequences and define the first putative promoter elements for any HPS genes. [source]