Home About us Contact | |||
Pure Liquids (pure + liquid)
Selected AbstractsNMR, solvation and theoretical investigations of conformational isomerism in 2-X-cyclohexanones (X=NMe2, OMe, SMe and SeMe)JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 11 2003Matheus P. Freitas Abstract The conformational equilibria of 2- N,N -dimethylamino- (1), 2-methoxy- (2), 2-methylthio- (3) and 2-methylselenocyclohexanone (4) were determined in various solvents by measurement of the 3JH-2,H-3 couplings. The observed couplings were analyzed using theoretical and solvation calculations to give both the conformer energies in the solvents studied plus the vapor-phase energies and the coupling constants for the distinct conformers. These gave the conformer energies and couplings of 2,4. The intrinsic couplings for the 2- N,N -dimethylamino compound were determined by the molecular mechanics PCMODEL program. The axial conformation in 1 is the most polar and also more stable in DMSO solution (Eeq,Eax=0.05,kcal,mol,1) and the pure liquid, while the equatorial conformer predominates in the remaining solvents studied (except in CCl4, where self-association is observed). In the methoxy ketone (2) the equatorial conformation is more stable in the vapor (Eeq,Eax=,0.30,kcal,mol,1) and in all solvents. The opposite behavior is shown by 3 and 4, where the axial conformation is the more stable one in the vapor phase (Eeq,Eax=1.60 and 2.95,kcal,mol,1 for 3 and 4, respectively) and is still the prevailing conformer in solution. The axial predominance for 3 and 4 is attributed to hyperconjugation between the electron lone pair of the hetero-substituent and the ,*CO orbital. This interaction is stronger for 3 and 4 than in the case of 1 and 2, where the ,gauche effect' in the equatorial conformation should be more effective in stabilizing this conformation. Copyright © 2003 John Wiley & Sons, Ltd. [source] UV curing behaviors and hydrophilic characteristics of UV curable waterborne hyperbranched aliphatic polyesters,POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 9 2003Anila Asif Abstract A series of waterborne hyperbranched polyesters (WBHPs) endcapped with methacrylic and salt-like groups in different ratios have been investigated as UV curable resins. The kinetic studies of the drying step and UV curing were carried out by FT-IR measurements. The drying of the film of 100,,m thickness was completed in less than 6,hr at 70°C or within 10,hr at 50°C in an oven. The influence of different photoinitiators and their concentrations, extent of unsaturation and acid content of WBHP on final unsaturation conversion was studied. The surface free energy is a critical character, which affects the surface properties of a cured film. So one method based on the measurement of contact angle of a pure liquid on a solid surface was applied to determine the polar and dispersive components of the surface energy of UV cured films. The investigations of surface energy of WBHPs illustrated that those with more acid content and thus higher polar component are more sensitive to water, while those containing less acid content and thus lower polar term are less water sensitive. Moreover, the UV cured films of WBHPs and their blends with commercial waterborne resins (trade name EB 210, EB 2002, EB 11 and IRR 160) have acceptable pendulum hardness varying from 55 to 180,sec. Copyright © 2003 John Wiley & Sons, Ltd. [source] Electrosprayed polymer particles: Effect of the solvent propertiesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2009Chul Ho Park Abstract Electrospraying technology has been studied in many fields to produce particles of various substances from nanoscale to microscale sizes. Unlike pure liquids, droplets formed by electrospraying that are comprised of polymer solutions undergo additional solidification processes involving solvent evaporation, which primarily determine the particle size and morphology. Herein, the effects of the solvent properties on the morphology and dimensions of solidified particles were systematically studied. In general, the size of the solidified spherical particles with smooth surfaces reflected that of the initially formed liquid droplets, which could partially be estimated by theoretical equations developed for pure liquids. Particle sizes increased with an increase in polymer content and a decrease in the boiling point of the volatile solvent. Inhomogeneous drying processes related to phase separation or skin formation resulted in hollow, cuplike, and porous particle structures, with particle sizes and morphologies that were outside of the scope of the theoretical treatments. The selection of a proper solvent or solvent mixture seemed to be a convenient way to control the particle morphologies, such as hollow, cuplike, or porous structures. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] Heat capacity measurement by flow calorimetry: An exact analysisAICHE JOURNAL, Issue 1 2009T. K. Hei Abstract The principal unsolved problem in flow calorimetry for liquid heat capacity measurement accurate accounting for heat loss from the heater lead-in wires as a function of system properties is analyzed by exact procedures for a five-zone calorimeter model. Temperature distributions in the fluid, and bi-metal wire are obtained from solutions of the governing third-order ODE in the fluid temperature for realistic boundary conditions. Conductive heat losses at the fluid exit qHL/q, are large (up to 20% of energy input), and physical property and flow rate dependent. A new correlating equation for (qHL/q,) gives separately and explicitly, for the first time, its dependence on calorimeter characteristics, flow rates and fluid properties. Experiments on five pure liquids confirmed the predictions of the theoretical model and produced Cp values in close agreement with literature data. Fluid friction and small convection heat losses (UiAi (,T)lm) were accounted for experimentally. © 2008 American Institute of Chemical Engineers AIChE J, 2009 [source] Acoustical Properties of Binary Mixtures of Heptane with Ethyl Acetate or Butyl AcetateCHINESE JOURNAL OF CHEMISTRY, Issue 3 2010Divya Shukla Abstract Mixed solvents rather than single pure liquids are of utmost practical importance in chemical and industrial processes as they provide an ample opportunity for the continuous adjustment of desired properties of the medium. Therefore, ultrasonic velocity (u) and density (,) were measured for the binary mixtures formed by heptane with ethyl acetate or butyl acetate at temperatures 293, 298 and 303 K over the entire composition range. Deviation in ultrasonic velocity (,u), deviation in isentropic compressibility (,,s), and excess intermolecular free length (LEf) have been evaluated using the ultrasonic velocity data and the computed results were fitted to the Redlich-Kister polynomial equation. The values of ,u, ,,s and LEf were plotted against the molar fraction of heptane. The observed positive and negative values of excess parameters were discussed in terms of molecular interaction between the components of the mixtures. Experimental values of ultrasonic velocity and density were compared with the results obtained by theoretical estimation procedures. The results were discussed in terms of average absolute deviation (AAD). [source] |