Pump Speed (pump + speed)

Distribution by Scientific Domains


Selected Abstracts


Noninvasive Activity-based Control of an Implantable Rotary Blood Pump: Comparative Software Simulation Study

ARTIFICIAL ORGANS, Issue 2 2010
Dean M. Karantonis
Abstract A control algorithm for an implantable centrifugal rotary blood pump (RBP) based on a noninvasive indicator of the implant recipient's activity level has been proposed and evaluated in a software simulation environment. An activity level index (ALI),derived from a noninvasive estimate of heart rate and the output of a triaxial accelerometer,forms the noninvasive indicator of metabolic energy expenditure. Pump speed is then varied linearly according to the ALI within a defined range. This ALI-based control module operates within a hierarchical multiobjective framework, which imposes several constraints on the operating region, such as minimum flow and minimum speed amplitude thresholds. Three class IV heart failure (HF) cases of varying severity were simulated under rest and exercise conditions, and a comparison with other popular RBP control strategies was performed. Pump flow increases of 2.54, 1.94, and 1.15 L/min were achieved for the three HF cases, from rest to exercise. Compared with constant speed control, this represents a relative flow change of 30.3, 19.8, and ,15.4%, respectively. Simulations of the proposed control algorithm exhibited the effective intervention of each constraint, resulting in an improved flow response and the maintenance of a safe operating condition, compared with other control modes. [source]


Spontaneous Echocardiographic Contrast in the Ascending Aorta Mimicking the Appearance of Aortic Dissection in a Patient with a Left Ventricular Assist Device

ECHOCARDIOGRAPHY, Issue 2 2004
Dermot G. Nicolson M.B.B.Ch.
We describe a patient with a previously implanted Jarvik 2000 left ventricular assist device (LVAD), who presented with bacteraemia and with features suspected for aortic dissection at the CT scan. However, transesophageal echocardiography showed competition in the ascending aorta between the retrograde pump flow and the anterograde transaortic output, which mimicked true aortic dissection and could be resolved by lowering the pump speed. As patients with LVAD are increasing in number, clinicians should be aware of this possible effect. (ECHOCARDIOGRAPHY, Volume 21, February 2004) [source]


Fully Autonomous Preload-Sensitive Control of Implantable Rotary Blood Pumps

ARTIFICIAL ORGANS, Issue 9 2010
Andreas Arndt
Abstract A pulsatility-based control algorithm with a self-adapting pulsatility reference value is proposed for an implantable rotary blood pump and is to be tested in computer simulations. The only input signal is the pressure difference across the pump, which is deduced from measurements of the pump's magnetic bearing. A pulsatility index (PI) is calculated as the mean absolute deviation from the mean pressure difference. As a second characteristic, the gradient of the PI with respect to the pump speed is derived. This pulsatility gradient (GPI) is used as the controlled variable to adjust the operating point of the pump when physiological variables such as the systemic arterial pressure, left ventricular contractility, or heart rate change. Depending on the selected mode of operation, the controller is either a linear controller or an extremum-seeking controller. A supervisory mechanism monitors the state of the system and projects the system into the region of convergence when necessary. The controller of the GPI continuously adjusts the reference value for PI. An underlying robust linear controller regulates the PI to the reference value in order to take into account changes in pulmonary venous return. As a means of reacting to sudden changes in the venous return, a suction detection mechanism was included. The control system is robustly stable within a wide range of physiological variables. All the clinician needs to do is to select between the two operating modes. No other adjustments are required. The algorithm showed promising results which encourage further testing in vitro and in vivo. [source]


Left Ventricle Afterload Impedance Control by an Axial Flow Ventricular Assist Device: A Potential Tool for Ventricular Recovery

ARTIFICIAL ORGANS, Issue 9 2010
Francesco Moscato
Abstract Ventricular assist devices (VADs) are increasingly used for supporting blood circulation in heart failure patients. To protect or even to restore the myocardial function, a defined loading of the ventricle for training would be important. Therefore, a VAD control strategy was developed that provides an explicitly definable loading condition for the failing ventricle. A mathematical model of the cardiovascular system with an axial flow VAD was used to test the control strategy in the presence of a failing left ventricle, slight physical activity, and a recovering scenario. Furthermore, the proposed control strategy was compared to a conventional constant speed mode during hemodynamic changes (reduced venous return and arterial vasoconstriction). The physiological benefit of the control strategy was manifested by a large increase in the ventricular Frank,Starling reserve and by restoration of normal hemodynamics (5.1 L/min cardiac output at a left atrial pressure of 10 mm Hg vs. 4.2 L/min at 21 mm Hg in the unassisted case). The control strategy automatically reduced the pump speed in response to reduced venous return and kept the pump flow independent of the vasoconstriction condition. Most importantly, the ventricular load was kept stable within 1%, compared to a change of 75% for the constant speed. As a key feature, the proposed control strategy provides a defined and adjustable load to the failing ventricle by an automatic regulation of the VAD speed and allows a controlled training of the myocardium. This, in turn, may represent a potential additional tool to increase the number of patients showing recovery. [source]


Use of Zirconia Ceramic in the DexAide Right Ventricular Assist Device Journal Bearing

ARTIFICIAL ORGANS, Issue 2 2010
Diyar Saeed
Abstract Our aim was to evaluate the potential use of zirconium oxide (zirconia) as a blood journal bearing material in the DexAide right ventricular assist device. The DexAide titanium stator was replaced by a zirconia stator in several blood pump builds, without changing the remaining pump hardware components. In vitro pump performance and efficiency were evaluated at a predetermined pump speed and flow. Motor power consumption decreased by 20%, and DexAide battery life was extended to over 12 h on two fully charged batteries. The zirconia stator was also successfully evaluated in a severe start/stop test pre- and postexposure of the zirconia to accelerated simulated biologic aging. This study's outcomes indicated the advantages of zirconia as an alternate journal bearing material for the DexAide device. [source]


A Mathematical Model to Evaluate Control Strategies for Mechanical Circulatory Support

ARTIFICIAL ORGANS, Issue 8 2009
Lieke G.E. Cox
Abstract Continuous flow ventricular assist devices (VADs) for mechanical circulatory support (MCS) are generally smaller and believed to be more reliable than pulsatile VADs. However, regarding continuous flow, there are concerns about the decreased pulsatility and ventricular unloading. Moreover, pulsatile VADs offer a wider range in control strategies. For this reason, we used a computer model to evaluate whether pulsatile operation of a continuous flow VAD would be more beneficial than the standard constant pump speed. The computer model describes the left and right ventricle with one-fiber heart contraction models, and the systemic, pulmonary, and coronary circulation with lumped parameter hemodynamical models, while the heart rate is regulated with a baroreflex model. With this computer model, both normal and heart failure hemodynamics were simulated. A HeartMate II left ventricular assist device model was connected to this model, and both constant speed and pulsatile support were simulated. Pulsatile support did not solve the decreased pulsatility issue, but it did improve perfusion (cardiac index and coronary flow) and unloading (stroke work and heart rate) compared with constant speed. Also, pulsatile support would be beneficial for developing control strategies, as it offers more options to adjust assist device settings to the patient's needs. Because the mathematical model used in this study can simulate different assist device settings, it can play a valuable role in developing mechanical circulatory support control strategies. [source]


Physiological Control of a Rotary Blood Pump With Selectable Therapeutic Options: Control of Pulsatility Gradient

ARTIFICIAL ORGANS, Issue 10 2008
Andreas Arndt
Abstract A control strategy for rotary blood pumps meeting different user-selectable control objectives is proposed: maximum support with the highest feasible flow rate versus medium support with maximum ventricular washout and controlled opening of the aortic valve (AoV). A pulsatility index (PI) is calculated from the pressure difference, which is deduced from the axial thrust measured by the magnetic bearing of the pump. The gradient of PI with respect to pump speed (GPI) is estimated via online system identification. The outer loop of a cascaded controller regulates GPI to a reference value satisfying the selected control objective. The inner loop controls the PI to a reference value set by the outer loop. Adverse pumping states such as suction and regurgitation can be detected on the basis of the GPI estimates and corrected by the controller. A lumped-parameter computer model of the assisted circulation was used to simulate variations of ventricular contractility, pulmonary venous pressure, and aortic pressure. The performance of the outer control loop was demonstrated by transitions between the two control modes. Fast reaction of the inner loop was tested by stepwise reduction of venous return. For maximum support, a low PI was maintained without inducing ventricular collapse. For maximum washout, the pump worked at a high PI in the transition region between the opening and the permanently closed AoV. The cascaded control of GPI and PI is able to meet different control objectives and is worth testing in vitro and in vivo. [source]


An In Vitro and In Vivo Study of the Detection and Reversal of Venous Collapse During Extracorporeal Life Support

ARTIFICIAL ORGANS, Issue 2 2007
Antoine P. Simons
Abstract:, The objective of this study was to investigate venous collapse (VC) related to venous drainage during the use of an extracorporeal life support circuit. A mock circulation was built containing a centrifugal pump and a collapsible vena cava model to simulate VC under controlled conditions. Animal experiments were performed for in vivo verification. Changing pump speed had a different impact on flow during a collapsed and a distended caval vein in both models. Flow measurement in combination with pump speed interventions allows for the detection and quantitative assessment of the degree of VC. Additionally, it was verified that a quick reversal of a VC situation could be achieved by a two-step pump speed intervention, which also proved to be more effective than a straightforward decrease in pump speed. [source]


The Role of Diastolic Pump Flow in Centrifugal Blood Pump Hemodynamics

ARTIFICIAL ORGANS, Issue 9 2001
Takehide Akimoto
Abstract: We tried to verify the hypothesis that increases in pump flow during diastole are matched by decreases in left ventricular (LV) output during systole. A calf (80 kg) was implanted with an implantable centrifugal blood pump (EVAHEART, SunMedical Technology Research Corp., Nagano, Japan) with left ventricle to aorta (LV-Ao) bypass, and parameters were recorded at different pump speeds under general anesthesia. Pump inflow and outflow pressure, arterial pressure, systemic and pulmonary blood flow, and electrocardiogram (ECG) were recorded on the computer every 5 ms. All parameters were separated into systolic and diastolic components and analyzed. The pulmonary flow was the same as the systemic flow during the study (p > 0.1). Systemic flow consisted of pump flow and LV output through the aortic valve. The ratio of systolic pump flow to pulmonary flow (51.3%) did not change significantly at variable pump speeds (p > 0.1). The other portions of the systemic flow were shared by the left ventricular output and the pump flow during diastole. When pump flow increased during diastole, there was a corresponding decrease in the LV output (Y = ,1.068X+ 51.462; R,2 = 0.9501). These show that pump diastolic flow may regulate expansion of the left ventricle in diastole. [source]