Pump Pulses (pump + pulse)

Distribution by Scientific Domains


Selected Abstracts


Surface-enhanced resonance Raman scattering using pulsed and continuous-wave laser excitation

JOURNAL OF RAMAN SPECTROSCOPY, Issue 6-7 2005
Rachael E. Littleford
Abstract Pulsed and continuous-wave (CW) lasers were compared as excitation sources for surface-enhanced resonance Raman scattering (SERRS). CW excitation provided SERRS spectra with a greater signal-to-noise ratio and more sensitive detection by a factor of ,50 compared with the high peak power, low repetition rate pulsed configuration used. The SERRS intensity using a pulsed laser produced a non-linear response with respect to changes in power of the laser. At powers of less than ,0.012 mW, the absolute intensity under the peaks of the CW and pulsed SERRS spectra converged, suggesting that lower peak power, high repetition rate systems may be more effective excitation sources for SERRS. Transmission electron microscopy of pulsed laser-irradiated silver particles showed significant sample damage and morphological changes. This problem was overcome with the use of a recirculating large-volume flow cell system, providing a fresh sample for each measurement. A picosecond-resolved time delay experiment found that SERRS intensity decreased by ,60% when exposed to a 400 nm pump pulse and probed with a 529 nm pulse. As the time delay between pump and probe increased the system recovered gradually to ,60% of the original SERRS intensity after 50 ps, where it remained constant. This suggests that the surface bonding between the silver and the dye is significantly perturbed, with some nanoscale diffusion occurring of the dye away from the metal surface. Hence chemical enhancement is temporarily prevented and electromagnetic enhancement is reduced as a function of 1/r3 as the dye moves away from the surface. Additionally, transient heating of the colloidal particles caused by the pulsed laser may also lead to plasmon shifts and changes in absorption intensity. Other factors such as surface annealing or decomposition of the silver particle or dye due the extreme temperature conditions may account for the permanent loss in SERRS intensity. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Measuring carrier mobility in conventional multilayer organic light emitting devices by delayed exciton generation

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 5 2008
S. Reineke
Abstract The authors present an alternative method for the determination of the charge carrier mobility of organic thin films. In contrast to known methods like space charge limited current, field effect transistor and time of flight approaches, we determine the charge carrier mobility of a mixed film, serving as emission layer, within the conventional multilayer device architecture. We make use of a strong delayed generation feature in the electroluminescent decay, following a short voltage pump pulse in a time-resolved set-up. Taking into account the preferentially electron transporting properties of the film, the mobility of a N,N ,-di(naphthalen-2-yl)- N,N ,-diphenyl-benzidine (NPB):tris(1-phenylisoquinoline) iridium [Ir(piq)3] mixed film is found to be on the order of 10,5 cm2 (Vs),1. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Coherent control of ground state excitons in the nonlinear regime within an ensemble of self-assembled InAs quantum dots

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 4 2009
Thomas Moldaschl
Abstract In this work femtosecond spectral hole burning spectroscopy is used to resonantly excite ground state excitons in an ensemble of self-assembled InAs/GaAs quantum dots with a strong pump pulse. Two fundamental coherent nonlinear effects are observed with the aid of the intrinsic time- and frequency resolution of the setup: The low temperature Rabi oscillation of the two-level system associated with the excitonic ground state transition and the observation of two-photon absorption in the surrounding GaAs crystal matrix. The emergence of the latter effect also infers the existence of charged excitons in the nominally undoped QD sample, backed up by the observation of additional spectral holes next to the excitonic transitions. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Structural Changes in the BODIPY Dye PM567 Enhancing the Laser Action in Liquid and Solid Media,

ADVANCED FUNCTIONAL MATERIALS, Issue 16 2007
I. García-Moreno
Abstract In the search for more efficient and photostable solid-state dye lasers, newly synthesized analogs of the borondipyrromethene (BODIPY) dye PM567, bearing the polymerizable methacryloyloxypropyl group at position 2 (PMoMA) or at positions 2 and 6 (PDiMA), have been studied in the form of solid copolymers with methyl methacrylate (MMA). The parent dye PM567, as well as the model analogs bearing the acetoxypropyl group in the same positions, PMoAc and PDiAc, respectively, have been also studied both in liquid solvents and in solid poly(MMA) (PMMA) solution. Although in liquid solution PMoAc and PDiAc have the same photophysical properties as PM567, PDiAc exhibited a photostability up to 10 times higher than that of PM567 in ethanol under 310,nm-irradiation. The possible stabilization factors of PDiAc have been analyzed and discussed on the basis of the redox potentials, the ability for singlet molecular oxygen [O2(1,g)] generation, the reactivity with O2(1,g), and quantum mechanical calculations. Both PMoAc and PDiAc, pumped transversally at 532,nm, lased in liquid solution with a high (up to 58,%), near solvent-independent efficiency. This enhanced photostabilization has been also observed in solid polymeric and copolymeric media. While the solid solution of the model dye PDiAc in PMMA showed a lasing efficiency of 33,%, with a decrease in the laser output of ca.,50,% after 60,000 pump pulses (10,Hz repetition rate) in the same position of the sample, the solid copolymer with the double bonded chromophore, COP(PDiMA-MMA), showed lasing efficiencies of up to 37,%, and no sign of degradation in the laser output after 100,000 similar pump pulses. Even under the more demanding repetition rate of 30,Hz, the laser emission from this material remained at 67,% of its initial laser output after 400,000 pump pulses, which is the highest laser photostability achieved to date for solid-state lasers based on organic polymeric materials doped with laser dyes. This result indicates that the double covalent linkage of the BODIPY chromophore to a PMMA polymeric matrix is even more efficient than the simple linkage, for its photostabilization under laser operation. [source]


Anomalous behavior of the second and third harmonics generated by femtosecond Cr:forsterite laser pulses in SiC,polymer nanocomposite materials as functions of the SiC nanopowder content

JOURNAL OF RAMAN SPECTROSCOPY, Issue 12 2003
S. O. Konorov
Abstract Femtosecond pulses of 1.25 µm Cr:forsterite laser radiation were used to study second- and third-harmonic generation in silicon carbide nanopowders embedded in a poly(methyl methacrylate) (PMMA) film. Harmonic generation processes extend the analytical and sensing abilities of light-scattering techniques, including Raman spectroscopy, offering a convenient and efficient approach to the analysis of nanocomposite materials where nanoparticles tend to agglomerate, masking informative features in Raman spectra. The second- and third-harmonic yields are shown to display an anomalous, counterintuitive behavior as functions of the SiC nanopowder content in a polymer film. Whereas harmonic generation in polymer films with a high content of SiC nanocrystals is quenched by the absorption of agglomerating nanoparticles, the influence of absorption is less detrimental in nanocomposite films with a lower SiC content, leading to the growth of the second- and third-harmonic yields. Nanocomposite films with a lower SiC content are also characterized by a higher breakdown threshold, allowing pump pulses with higher fluences to be applied for more efficient harmonic generation. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Exciton dynamics probed in carbon nanotube suspensions with narrow diameter distribution

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 13 2006
Tobias Hertel
Abstract We report on a pump,probe study of CoMoCAT nanotube suspensions with narrow chirality distribution. Visible pump pulses and a white light continuum are used for resonant excitation of the strongest dipole allowed E22 subband exciton in the semiconducting (6, 5) tube and for broadband probe of the resulting spectral transients between 1300 nm and 480 nm, respectively. Transient spectra show signatures of both photobleaching (PB) and photoabsorption (PA) with practically identical decay- but slightly different rise-times. The experiments reveal that apparent variations of decay rates at different wavelengths do not reflect dynamics of different relaxation processes but are a consequence of the superposition of PB and blue-shifted PA response. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Coherence control of electron spin currents in semiconductors

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 10 2006
Henry M. van Driel
Abstract We provide an overview of some of our recent work on the use of one color and two color optical techniques to generate and control electronic spin currents in semiconductors for which a spin,orbit interaction exists. The generation process relies on the quantum interference between different absorption pathways, such as that between single and two photon absorption or those involving different polarization states of a monochromatic beam. For different crystal orientations and/or beam polarizations it is possible to generate a spin current with or without an electric current, and an electrical current with or without a spin current. In our experiments, which are conducted either at 80 K or 295 K, we typically employ nominally 100 fs pulses centered near 1500 and 750 nm. The currents generated are quasi-ballistic and the carriers typically move distances of ,1,10 nm, determined by the momentum relaxation time, which is of the order of 100 fs. The transient characteristics of spin-polarized electrical currents generated in strained GaAs at room temperature by ,100 fs pulses is detected by the emitted THz radiation. Pure spin currents can be detected by taking advantage of the accumulation of up and down spins on opposite sides of tightly focused pump beams. The spin states are detected through differential transmission measurements of tightly focused right and left circularly polarized, near-band-edge probe pulses, delayed by several picoseconds from the pump pulses to allow carrier thermalization to occur. By spatial scanning across the differential spin profiles and determining the amplitude of the response we are able to translate this into nm spatial resolution of spin displacement. Finally, the ability to generate ballistic currents using purely optical techniques allows us to generate transverse Hall-like currents, with transverse charge currents generated from pure spin currents and transverse spin currents generated from pure charge currents. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Optical Kerr response to multi pump pulses on GaAs weakly confined exciton

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 6 2009
Atsushi Kanno
Abstract We investigate optical Kerr response under two-pump pulse irradiation induced by GaAs weakly confined exciton. Ultrafast response times of the order of picoseconds are observed despite long exciton lifetime of the order of nanoseconds. The difference may be attributed to the relaxation mechanisms between population relaxation and nonlinear relaxation of excitons. In addition, the observed temporal shapes of the optical Kerr response are conserved under irradiation by a preceding pulse that forms the exciton population. The pulse separation of the optical Kerr response between two pump pulses is achieved to be 800 fs, which corresponds to a signal train of 1.25 Tbits per second. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]