Protonated Peptides (protonated + peptide)

Distribution by Scientific Domains


Selected Abstracts


Preparative separation of a multicomponent peptide mixture by mass spectrometry

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 2 2006
Xinli Yang
Abstract We report on the first multiplex preparative separation by mass spectrometry of bio-organic molecules in the 200,350 Da mass range that is typical for synthetic drugs. A five-component mixture consisting of two di- and three tripeptides has been separated by mass using a specially designed mass spectrometer. The instrument for preparative separations consists of an electrospray ionization (ESI) source, ion transfer optics, an electrostatic sector, and an inhomogeneous-field magnetic mass analyzer that achieves linear mass dispersion of ion beams. Protonated peptides produced by electrospray were separated, nondestructively landed on a 16-channel array of dry collector plates, and reconstituted in solution. The preparation procedures and the instrumental conditions have been optimized to maximize the ion currents. The significant features of the special mass spectrometer are high ion currents and simultaneous separation and collection of mixture components. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Dissociation mechanisms and implication for the presence of multiple conformations for peptide ions with arginine at the C-terminus: time-resolved photodissociation study

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 7 2010
So Hee Yoon
Abstract Time-resolved photodissociation (PD) patterns of singly protonated peptides with arginine at the C-terminus (C-arg peptide ions) have been used to classify the dissociation channels into two categories, i.e. high-energy channels generating v, w and x and low-energy ones generating b, y and z. x + 1 formed by C,CO cleavage seems to be the intermediate ion in high-energy channels just as a + 1 is for N-arg peptide ions. Difference in time-resolved pattern indicates that the two sets of channels, high- and low-energy ones, are not in direct competition. Noncompetitive dissociation is also indicated by the observation of anomalous effect of matrix used in matrix-assisted laser desorption ionization, a cooler matrix generating more high-energy product ions both in spontaneous dissociation and in PD. Results from detailed investigation suggest that the two sets of channels start from two (or more) different conformations. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Formation of [b3 , 1 + cat]+ ions from metal-cationized tetrapeptides containing ,-alanine, ,-aminobutyric acid or ,-aminocaproic acid residues

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 11 2008
Sandra M. Osburn
Abstract The presence and position of a single ,-alanine (,A), ,-aminobutyric acid (,ABu) or ,-aminocaproic acid (Cap) residue has been shown to have a significant influence on the formation of bn+ and yn+ product ions from a series of model, protonated peptides. In this study, we examined the effect of the same residues on the formation of analogous [b3 , 1 + cat]+ products from metal(Li+, Na+ and Ag+)-cationized peptides. The larger amino acids suppress formation of b3+ from protonated peptides with general sequence AAXG (where X = ,-alanine, ,-aminobutyric acid or ,-aminocaproic acid), presumably because of the prohibitive effect of larger cyclic intermediates in the ,oxazolone' pathway. However, abundant [b3 , 1 + cat]+ products are generated from metal-cationized versions of AAXG. Using a group of deuterium-labeled and exchanged peptides, we found that formation of [b3 , 1 + cat]+ involves transfer of either amide or ,-carbon position H atoms, and the tendency to transfer the atom from the ,-carbon position increases with the size of the amino acid in position X. To account for the transfer of the H atom, a mechanism involving formation of a ketene product as [b3 , 1 + cat]+ is proposed. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Internal energy distribution of peptides in electrospray ionization : ESI and collision-induced dissociation spectra calculation

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 4 2008
Alireza Pak
Abstract The internal energy of ions and the timescale play fundamental roles in mass spectrometry. The main objective of this study is to estimate and compare the internal energy distributions of different ions (different nature, degree of freedom ,DOF' and fragmentations) produced in an electrospray source (ESI) of a triple-quadrupole instrument (Quattro I Micromass). These measurements were performed using both the Survival Yield method (as proposed by De Pauw) and the MassKinetics software (kinetic model introduced by Vékey). The internal energy calibration is the preliminary step for ESI and collision-induced dissociation (CID) spectra calculation. meta -Methyl-benzylpyridinium ion and four protonated peptides (YGGFL, LDIFSDF, LDIFSDFR and RLDIFSDF) were produced using an electrospray source. These ions were used as thermometer probe compounds. Cone voltages (Vc) were linearly correlated with the mean internal energy values () carried by desolvated ions. These mean internal energy values seem to be slightly dependent on the size of the studied ion. ESI mass spectra and CID spectra were then simulated using the MassKinetics software to propose an empirical equation for the mean internal energy () versus cone voltage (Vc) for different source temperatures (T): < Eint > = [405 × 10,6 , 480 × 10,9 (DOF)] VcT + Etherm(T). In this equation, the Etherm(T) parameter is the mean internal energy due to the source temperature at 0 Vc. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Neutral loss of amino acid residues from protonated peptides in collision-induced dissociation generates N- or C-terminal sequence ladders,

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 11 2003
Mogjiborahman Salek
Abstract The widespread occurrence of the neutral loss of one to six amino acid residues as neutral fragments from doubly protonated tryptic peptides is documented for 23 peptides with individual sequences. Neutral loss of amino acids from the N-terminus of doubly charged tryptic peptides results in doubly charged y-ions, forming a ladder-like series with the ions [M + 2H]2+ = ymax2+, ymax , 12+, ymax , 22+, etc. An internal residue such as histidine, proline, lysine or arginine appears to favor this type of fragmentation, although it was sometimes also observed for peptides without this structure. For doubly protonated non-tryptic peptides with one of these residues at or near the N-terminus, we observed neutral loss from the C-terminus, resulting in a doubly charged b-type ion ladder. The analyses were performed by Q-TOF tandem mass spectrometry, facilitating the recognition of neutral loss ladders by their 2+ charge state and the conversion of the observed mass differences into reliable sequence information. It is shown that the neutral loss of amino acid residues requires low collision offset values, a simple mechanistic explanation based on established fragmentation rules is proposed and the utility of this neutral loss fragmentation pathway as an additional source for dependable peptide sequence information is documented. Copyright © 2003 John Wiley & Sons, Ltd. [source]


To b or not to b: The ongoing saga of peptide b ions

MASS SPECTROMETRY REVIEWS, Issue 4 2009
Alex G. Harrison
Abstract Modern soft ionization techniques readily produce protonated or multiply protonated peptides. Collision-induced dissociation (CID) of these protonated species is often used as a method to obtain sequence information. In many cases fragmentation occurs at amide bonds. When the charge resides on the C-terminal fragment so-called y ions are produced which are known to be protonated amino acids or truncated peptides. When the charge resides on the N-terminal fragment so-called b ions are produced. Often the sequence of y and b ions are essential for peptide sequencing. The b ions have many possible structures, a knowledge of which is useful in this sequencing. The structures of b ions are reviewed in the following with particular emphasis on the variation of structure with the number of amino acid residues in the b ion and the effect of peptide side chain on b ion structure. The recent discovery of full cyclization of larger b ions results in challenges in peptide sequencing. This aspect is discussed in detail. © 2009 Wiley Periodicals, Inc., Mass Spec Rev 28:640,654, 2009 [source]


Fragmentation pathways of protonated peptides

MASS SPECTROMETRY REVIEWS, Issue 4 2005
Béla Paizs
Abstract The fragmentation pathways of protonated peptides are reviewed in the present paper paying special attention to classification of the known fragmentation channels into a simple hierarchy defined according to the chemistry involved. It is shown that the ,mobile proton' model of peptide fragmentation can be used to understand the MS/MS spectra of protonated peptides only in a qualitative manner rationalizing differences observed for low-energy collision induced dissociation of peptide ions having or lacking a mobile proton. To overcome this limitation, a deeper understanding of the dissociation chemistry of protonated peptides is needed. To this end use of the ,pathways in competition' (PIC) model that involves a detailed energetic and kinetic characterization of the major peptide fragmentation pathways (PFPs) is proposed. The known PFPs are described in detail including all the pre-dissociation, dissociation, and post-dissociation events. It is our hope that studies to further extend PIC will lead to semi-quantative understanding of the MS/MS spectra of protonated peptides which could be used to develop refined bioinformatics algorithms for MS/MS based proteomics. Experimental and computational data on the fragmentation of protonated peptides are reevaluated from the point of view of the PIC model considering the mechanism, energetics, and kinetics of the major PFPs. Evidence proving semi-quantitative predictability of some of the ion intensity relationships (IIRs) of the MS/MS spectra of protonated peptides is presented. © 2004 Wiley Periodicals, Inc., Mass Spec Rev 24:508,548, 2005 [source]


Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 3 2007
Sebastian Wiese
Abstract A novel, MS-based approach for the relative quantification of proteins, relying on the derivatization of primary amino groups in intact proteins using isobaric tag for relative and absolute quantitation (iTRAQ) is presented. Due to the isobaric mass design of the iTRAQ reagents, differentially labeled proteins do not differ in mass; accordingly, their corresponding proteolytic peptides appear as single peaks in MS scans. Because quantitative information is provided by isotope-encoded reporter ions that can only be observed in MS/MS spectra, we analyzed the fragmentation behavior of ESI and MALDI ions of peptides generated from iTRAQ-labeled proteins using a TOF/TOF and/or a QTOF instrument. We observed efficient liberation of reporter ions for singly protonated peptides at low-energy collision conditions. In contrast, increased collision energies were required to liberate the iTRAQ label from lysine side chains of doubly charged peptides and, thus, to observe reporter ions suitable for relative quantification of proteins with high accuracy. We then developed a quantitative strategy that comprises labeling of intact proteins by iTRAQ followed by gel electrophoresis and peptide MS/MS analyses. As proof of principle, mixtures of five different proteins in various concentration ratios were quantified, demonstrating the general applicability of the approach presented here to quantitative MS-based proteomics. [source]


Observations on the detection of b- and y-type ions in the collisionally activated decomposition spectra of protonated peptides

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 10 2009
King Wai Lau
Tandem mass spectrometric data from peptides are routinely used in an unsupervised manner to infer product ion sequence and hence the identity of their parent protein. However, significant variability in relative signal intensity of product ions within peptide tandem mass spectra is commonly observed. Furthermore, instrument-specific patterns of fragmentation are observed, even where a common mechanism of ion heating is responsible for generation of the product ions. This information is currently not fully exploited within database searching strategies; this motivated the present study to examine a large dataset of tandem mass spectra derived from multiple instrumental platforms. Here, we report marked global differences in the product ion spectra of protonated tryptic peptides generated from two of the most common proteomic platforms, namely tandem quadrupole-time-of-flight and quadrupole ion trap instruments. Specifically, quadrupole-time-of-flight tandem mass spectra show a significant under-representation of N-terminal b-type fragments in comparison to quadrupole ion trap product ion spectra. Energy-resolved mass spectrometry experiments conducted upon test tryptic peptides clarify this disparity; b-type ions are significantly less stable than their y-type N-terminal counterparts, which contain strongly basic residues. Secondary fragmentation processes which occur within the tandem quadrupole-time-of-flight device account for the observed differences, whereas this secondary product ion generation does not occur to a significant extent from resonant excitation performed within the quadrupole ion trap. We suggest that incorporation of this stability information in database searching strategies has the potential to significantly improve the veracity of peptide ion identifications as made by conventional database searching strategies. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Tandem electrospray mass spectrometric studies of proton and sodium ion adducts of neutral peptides with modified N- and C-termini: synthetic model peptides and microheterogeneous peptaibol antibiotics

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 4 2006
Varatharajan Sabareesh
The fragmentations of [M+H]+ and [M+Na]+ adducts of neutral peptides with blocked N- and C-termini have been investigated using electrospray ion trap mass spectrometry. The N-termini of these synthetically designed peptides are blocked with a tertiarybutyloxycarbonyl (Boc) group, and the C-termini are esterified. These peptides do not possess side chains that are capable of complexation and hence the backbone amide units are the sole sites of protonation and metallation. The cleavage patterns of the protonated peptides are strikingly different from those of sodium ion adducts. While the loss of the N-terminal blocking group occurs quite readily in the case of MS/MS of [M+Na]+, the cleavage of the C-terminal methoxy group seems to be a facile process in the case of MS/MS of [M+H]+. Fragmentation of the protonated adducts yields only bn ions, while yn and an ions are predominantly formed from the fragmentation of sodium ion adducts. The an ions arising from the fragmentation of [M+Na]+ lack the N-terminal Boc group (and are here termed an* ions). MS/MS of [M+Na]+ species also yields bn ions of substantially lower intensities that lack the N-terminal Boc group (bn*). A similar distinction between the fragmentation patterns of proton and sodium ion adducts is observed in the case of peptides possessing an N-terminal acetyl group. An example of the fragmentation of the H+ and Na+ adducts of a naturally occurring peptaibol from a Trichoderma species confirms that fragmentation of these two ionized species yields complementary information, useful in sequencing natural peptides. Inspection of the isotopic pattern of bn ions derived from [M+H]+ adducts of peptaibols provided insights into the sequences of microheterogeneous samples. This study reveals that the combined use of protonated and sodium ion adducts should prove useful in de novo sequencing of peptides, particularly of naturally occurring neutral peptides with modified N- and C-termini, for example, peptaibols. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Sequence- and site-specific photodissociation at 266,nm of protonated synthetic polypeptides containing a tryptophanyl residue

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 22 2004
Joo Yeon Oh
Photodissociation at 266,nm of protonated synthetic polypeptides containing a tryptophanyl residue was investigated using a homebuilt tandem time-of-flight mass spectrometer equipped with a matrix-assisted laser desorption/ionization source. Efficient photodissociation of the protonated peptides was demonstrated. Most of the intense peaks in the laser-induced tandem mass spectra were sequence ions. Furthermore, sequence ions due to cleavages at all the peptide bonds were observed; this is a feature of the technique that is particularly useful for peptide sequencing. Fragmentations at both ends of the tryptophanyl residue were especially prevalent, which can be useful for location of the tryptophanyl chromophore in a peptide. Copyright © 2004 John Wiley & Sons, Ltd. [source]


The nature of collision-induced dissociation processes of doubly protonated peptides: comparative study for the future use of matrix-assisted laser desorption/ionization on a hybrid quadrupole time-of-flight mass spectrometer in proteomics

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 22 2001
R. Cramer
Comparative MS/MS studies of singly and doubly charged electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) precursor peptide ions are described. The spectra from these experiments have been evaluated with particular emphasis on the data quality for subsequent data processing and protein/amino acid sequence identification. It is shown that, once peptide ions are formed by ESI or MALDI, their charge state, as well as the collision energy, is the main parameter determining the quality of collision-induced dissociation (CID) MS/MS fragmentation spectra of a given peptide. CID-MS/MS spectra of singly charged peptides obtained on a hybrid quadrupole orthogonal time-of-flight mass spectrometer resemble very closely spectra obtained by matrix-assisted laser desorption/ionization post-source decay time-of-flight mass spectrometry (MALDI-PSD-TOFMS). On the other hand, comparison of CID-MS/MS spectra of either singly or doubly charged ion species shows no dependence on whether ions have been formed by ESI or MALDI. This observation confirms that, at the time of precursor ion selection, further mass analysis is effectively decoupled from the desorption/ionization event. Since MALDI ions are predominantly formed as singly charged species and ESI ions as doubly charged, the associated difference in the spectral quality of MS/MS spectra as described here imposes direct consequences on data processing, database searching using ion fragmentation data, and de novo sequencing when ionization techniques are changed. Copyright © 2001 John Wiley & Sons, Ltd. [source]