Home About us Contact | |||
Proton Transport (proton + transport)
Selected AbstractsNMR Studies of Proton Transport in Anhydrous Polymer Electrolytes for High Temperature Fuel Cells,FUEL CELLS, Issue 3-4 2008H. A. Every Abstract This paper presents an NMR study of the dynamic processes related to proton transport in a new polymer consisting of two blocks , poly(2,6-diphenylphenol) (P3O) and an imidazole functionalised poly(2,6-dimethylphenol) (imi-PPE) , and subsequently doped with polyphosphoric acid (PPA). From 1H and 31P NMR relaxation and diffusion measurements of the individual homopolymers and block copolymer, it was observed that addition of PPA significantly enhanced the mobility of imi-PPE and the imi-block copolymer, but not of P3O. The similarity in 1H T2 values between imi-PPE and the imi-block copolymer suggests that the relaxation behaviour in the block copolymer is dominated by the imi-PPE phase. 1H diffusion in P3O and the imi-block copolymer were comparable to pure PPA, suggesting that the proton diffusion is similar in each case. For imi-PPE, the diffusion coefficients were several orders of magnitude lower, reflecting a restricted diffusion process that is not indicative of the proton mobility. For all three polymers, the 31P T2 relaxation behaviour and inability to measure 31P diffusion coefficients imply hindered translational motion of the phosphonate groups. From these results, it can be concluded that hydrogen bonds between the phosphoric acid and the polymer form a network that facilitates proton transport via a hopping mechanism. [source] Proton Transport from Dendritic Helical-Pore-Incorporated PolymersomesADVANCED FUNCTIONAL MATERIALS, Issue 18 2009Anthony J. Kim Abstract The ability to add synthetic channels to polymersome (polymer vesicle) membranes could lead to novel membrane composites with unique selectivity and permeability. Proton transport through two different synthetic pores, self-assembled from either a dendritic dipeptide, (6Nf-3,4-3,5)12G2-CH2 -Boc-L-Tyr-L-Ala-OMe, or a dendritic ester, (R)-4Bp-3,4-dm8G1-COOMe, incorporated into polymersome membranes are studied. Polymersomes provide an excellent platform for studying such transport processes due to their robustness and mechanical and chemical stability compared to liposomes. It is found that the incorporated dendritic dipeptide and dendritic ester assemble into stable helical pores in the poly(ethylene oxide)-polybutadiene (PEO-PBD) polymersomes but not in the poly(2-methyloxazoline)-poly(dimethylsiloxane)-poly(2-methyl oxazoline) (PMOX-PDMS-PMOX) polymersomes. The incorporation is confirmed by circular dichroism (CD), changes in purely synthetic mechanical strength (e.g., areal expansion modulus) as assessed by micropipette aspiration, and cryo-TEM. In addition to the structural analyses, a transport measurement shows the incorporated dendritic helical pores allow facile transport of protons across the polymersome membranes after up to one month of storage. This integration of synthetic porous channels with polymersome substrates could provide a valuable tool for studying active transport processes in a composite membrane. These composites will ultimately expand the family of biologically inspired porous-membrane mimics. [source] Solvate-Supported Proton Transport in ZeolitesCHEMPHYSCHEM, Issue 4 2004Marion E. Franke Dr. Abstract Solvate-supported proton transport in zeolite H-ZSM-5 was studied by means of complex impedance spectroscopy. The zeolite shows enhanced proton mobility in the presence of NH3and H2O that depends on the concentration of the solvate molecule, temperature (298,773 K), and the SiO2/Al2O3ratio of the zeolite (30,1000). In general, proton conductivity in H-ZSM-5 is most effectively supported in the presence of NH3and H2O at high concentrations, low temperatures, and low SiO2/Al2O3ratios (,80). For the aluminum-rich samples desorption measurements reflect different transport mechanisms that depend on the respective temperature range. Up to about 393 K a Grotthus-like proton transport mechanism is assumed, whereas at higher temperatures (393,473 K) vehiclelike transport seems to dominate. The activation energies for NH4+and H3O+vehicle conductivity depend on the SiO2/Al2O3ratio, and the values are in the range of 49,59 and 39,49 kJ,mol,1, respectively, and thus significantly lower than those for "pure" proton conduction in solvate-free samples. [source] Proton Transport from Dendritic Helical-Pore-Incorporated PolymersomesADVANCED FUNCTIONAL MATERIALS, Issue 18 2009Anthony J. Kim Abstract The ability to add synthetic channels to polymersome (polymer vesicle) membranes could lead to novel membrane composites with unique selectivity and permeability. Proton transport through two different synthetic pores, self-assembled from either a dendritic dipeptide, (6Nf-3,4-3,5)12G2-CH2 -Boc-L-Tyr-L-Ala-OMe, or a dendritic ester, (R)-4Bp-3,4-dm8G1-COOMe, incorporated into polymersome membranes are studied. Polymersomes provide an excellent platform for studying such transport processes due to their robustness and mechanical and chemical stability compared to liposomes. It is found that the incorporated dendritic dipeptide and dendritic ester assemble into stable helical pores in the poly(ethylene oxide)-polybutadiene (PEO-PBD) polymersomes but not in the poly(2-methyloxazoline)-poly(dimethylsiloxane)-poly(2-methyl oxazoline) (PMOX-PDMS-PMOX) polymersomes. The incorporation is confirmed by circular dichroism (CD), changes in purely synthetic mechanical strength (e.g., areal expansion modulus) as assessed by micropipette aspiration, and cryo-TEM. In addition to the structural analyses, a transport measurement shows the incorporated dendritic helical pores allow facile transport of protons across the polymersome membranes after up to one month of storage. This integration of synthetic porous channels with polymersome substrates could provide a valuable tool for studying active transport processes in a composite membrane. These composites will ultimately expand the family of biologically inspired porous-membrane mimics. [source] Modeling the three-dimensional structure of H+ -ATPase of Neurospora crassaFEBS JOURNAL, Issue 21 2002Proposal for a proton pathway from the analysis of internal cavities Homology modeling in combination with transmembrane topology predictions are used to build the atomic model of Neurospora crassa plasma membrane H+ -ATPase, using as template the 2.6 Å crystal structure of rabbit sarcoplasmic reticulum Ca2+ -ATPase [Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. (2000) Nature 405, 647,655]. Comparison of the two calcium-binding sites in the crystal structure of Ca2+ -ATPase with the equivalent region in the H+ -ATPase model shows that the latter is devoid of most of the negatively charged groups required to bind the cations, suggesting a different role for this region. Using the built model, a pathway for proton transport is then proposed from computed locations of internal polar cavities, large enough to contain at least one water molecule. As a control, the same approach is applied to the high-resolution crystal structure of halorhodopsin and the proton pump bacteriorhodopsin. This revealed a striking correspondence between the positions of internal polar cavities, those of crystallographic water molecules and, in the case of bacteriorhodopsin, the residues mediating proton translocation. In our H+ -ATPase model, most of these cavities are in contact with residues previously shown to affect coupling of proton translocation to ATP hydrolysis. A string of six polar cavities identified in the cytoplasmic domain, the most accurate part of the model, suggests a proton entry path starting close to the phosphorylation site. Strikingly, members of the haloacid dehalogenase superfamily, which are close structural homologs of this domain but do not share the same function, display only one polar cavity in the vicinity of the conserved catalytic Asp residue. [source] Ceramic Membranes: Microstructural Engineering of Hydroxyapatite Membranes to Enhance Proton Conductivity (Adv. Funct.ADVANCED FUNCTIONAL MATERIALS, Issue 24 2009Mater. The inside cover image showns a side view of a hydroxyapatite membrane with aligned crystal domains synthesized as described by Liu et al. on page 3941. The microstructure of the membrane is engineered to promote proton transport through orientation of the proton conducting paths. These novel structures have significantly higher proton conductivity than traditional hydroxyapatite ceramics and may offer improved performance in intermediate temperature fuel cells. [source] NMR Studies of Proton Transport in Anhydrous Polymer Electrolytes for High Temperature Fuel Cells,FUEL CELLS, Issue 3-4 2008H. A. Every Abstract This paper presents an NMR study of the dynamic processes related to proton transport in a new polymer consisting of two blocks , poly(2,6-diphenylphenol) (P3O) and an imidazole functionalised poly(2,6-dimethylphenol) (imi-PPE) , and subsequently doped with polyphosphoric acid (PPA). From 1H and 31P NMR relaxation and diffusion measurements of the individual homopolymers and block copolymer, it was observed that addition of PPA significantly enhanced the mobility of imi-PPE and the imi-block copolymer, but not of P3O. The similarity in 1H T2 values between imi-PPE and the imi-block copolymer suggests that the relaxation behaviour in the block copolymer is dominated by the imi-PPE phase. 1H diffusion in P3O and the imi-block copolymer were comparable to pure PPA, suggesting that the proton diffusion is similar in each case. For imi-PPE, the diffusion coefficients were several orders of magnitude lower, reflecting a restricted diffusion process that is not indicative of the proton mobility. For all three polymers, the 31P T2 relaxation behaviour and inability to measure 31P diffusion coefficients imply hindered translational motion of the phosphonate groups. From these results, it can be concluded that hydrogen bonds between the phosphoric acid and the polymer form a network that facilitates proton transport via a hopping mechanism. [source] The effect of water content on proton transport in polymer electrolyte membranesFUEL CELLS, Issue 3-4 2002P. Commer Abstract We investigate proton transport in a polymer electrolyte membrane using continuum theory and molecular dynamics (MD) computer simulations. Specifically our goal is to understand the possible molecular origin of the effect of water content on the activation energy (AE) and pre-exponential factor of proton conductivity, in comparison with experimental observations reported for Nafion, where a decrease of AE with increasing water content has been observed. We study proton diffusion in a single pore, using a slab-like model. We find that although the average proton diffusion coefficient is several times smaller in a narrow pore than in a wide water-rich pore, its AE is almost unaffected by the pore width. This contradicts an earlier proposed conjecture that the sizable Coulomb potential energy barriers near the lattice of immobile point-like SO3, groups increase the AE in a narrow pore. Here we show that these barriers become smeared out by thermal motion of SO3, groups and by the spatial charge distribution over their atoms. This effect strongly diminishes the variation of the AE with pore width, which is also found in MD simulations. The pre-exponential factor for the diffusion process, however, decreases, indicating a limited number of pathways for proton transfer and the freezing out of degrees of freedom that contribute to the effective frequency of transfer. Decreasing the pore size diminishes bulk-like water regions in the pore, with only less mobile surface water molecules remaining. This hampers proton transfer. The increase of AE takes place only if the thermal motion of the SO3, head groups freezes out simultaneously with decreasing water content, but the effect is not profound. The stronger effect observed experimentally may thus be associated with some other rate-determining consecutive process, concerned with polymer dynamics, such as opening and closing of connections (bridges) between aqueous domains in the membrane under low water content. [source] Perfluoroalkyl Phosphonic and Phosphinic Acids as Proton Conductors for Anhydrous Proton-Exchange MembranesCHEMPHYSCHEM, Issue 13 2010Mahesha B. Herath Abstract A study of proton-transport rates and mechanisms under anhydrous conditions using a series of acid model compounds, analogous to comb-branch perfluorinated ionomers functionalized with phosphonic, phosphinic, sulfonic, and carboxylic acid protogenic groups, is reported. Model compounds are characterized with respect to proton conductivity, viscosity, proton, and anion (conjugate base) self-diffusion coefficients, and Hammett acidity. The highest conductivities, and also the highest viscosities, are observed for the phosphonic and phosphinic acid model compounds. Arrhenius analysis of conductivity and viscosity for these two acids reveals much lower activation energies for ion transport than for viscous flow. Additionally, the proton self-diffusion coefficients are much higher than the conjugate-base self-diffusion coefficients for these two acids. Taken together, these data suggest that anhydrous proton transport in the phosphonic and phosphinic acid model compounds occurs primarily by a structure-diffusion, hopping-based mechanism rather than a vehicle mechanism. Further analysis of ionic conductivity and ion self-diffusion rates by using the Nernst,Einstein equation reveals that the phosphonic and phosphinic acid model compounds are relatively highly dissociated even under anhydrous conditions. In contrast, sulfonic and carboxylic acid-based systems exhibit relatively low degrees of dissociation under anhydrous conditions. These findings suggest that fluoroalkyl phosphonic and phosphinic acids are good candidates for further development as anhydrous, high-temperature proton conductors. [source] Solvate-Supported Proton Transport in ZeolitesCHEMPHYSCHEM, Issue 4 2004Marion E. Franke Dr. Abstract Solvate-supported proton transport in zeolite H-ZSM-5 was studied by means of complex impedance spectroscopy. The zeolite shows enhanced proton mobility in the presence of NH3and H2O that depends on the concentration of the solvate molecule, temperature (298,773 K), and the SiO2/Al2O3ratio of the zeolite (30,1000). In general, proton conductivity in H-ZSM-5 is most effectively supported in the presence of NH3and H2O at high concentrations, low temperatures, and low SiO2/Al2O3ratios (,80). For the aluminum-rich samples desorption measurements reflect different transport mechanisms that depend on the respective temperature range. Up to about 393 K a Grotthus-like proton transport mechanism is assumed, whereas at higher temperatures (393,473 K) vehiclelike transport seems to dominate. The activation energies for NH4+and H3O+vehicle conductivity depend on the SiO2/Al2O3ratio, and the values are in the range of 49,59 and 39,49 kJ,mol,1, respectively, and thus significantly lower than those for "pure" proton conduction in solvate-free samples. [source] |