Proton Concentration (proton + concentration)

Distribution by Scientific Domains


Selected Abstracts


Inhibition of endive (Cichorium endivia L.) polyphenoloxidase by a Carica papaya latex preparation

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 6 2001
David De Rigal
When endive polyphenoloxidase (PPO) was incubated with a crude papaya latex extract, it rapidly lost its activity. Inactivation was ascribed to thermostable nonenzymatic factors of low molecular weight. These factors were partially purified by a two step protocol including gel filtration chromatography on Biogel P2 and ion exchange chromatography using DEAE Sephadex A25. The PPO-inactivation rate was first order, when either inactivating agent or proton concentration was evaluated. Inactivation could be partially reversed by CuSO4, which suggested that the inactivating factor(s) bound to the copper site of the enzyme. On a more rapid time scale than inactivation, papaya latex extract acted also as a weak noncompetitive PPO inhibitor. [source]


Electrical Conductivity of the High-Temperature Proton Conductor BaZr0.9Y0.1O2.95

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 4 2000
Hans G. Bohn
The impedance of the cubic perovskite BaZr0.9Y0.1O3-, has been systematically investigated in dry and wet atmospheres at high and low oxygen partial pressures. In the grain interior, conductivity contributions from oxygen ions, electron holes, and protons can be identified. Below 300°C, proton conduction dominates and increases linearly with the frozen-in proton concentration. The proton mobility, with an activation energy of 0.44 ± 0.01 eV is among the highest ever reported for a perovskite-type oxide proton conductor. For dry oxygen atmos-pheres, electron hole conduction dominates with an activation energy of ,0.9 eV. At temperatures <500°C, the grain-boundary conductivity can be separated and increases upon incorporation of protons. The high electrical conductivity and chemical stability make acceptor-doped barium zirconate a good choice for application as a high-temperature proton conductor. [source]


Exfoliation corrosion of aluminum alloy AA7075 examined by electrochemical impedance spectroscopy

MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 1 2004
F.-H. Cao
Abstract A typical aluminum alloy, AA7075, was immersed in the EXCO solution, and its corrosion properties during different immersion time were measured repetitively using electrochemical impedance spectroscopy technique (EIS). The EIS data a were simulated using equivalent circuit with ZView program. The results show that once the exfoliation occurs, the low frequency inductive loop in the Nyquist plot associated with the relaxation phenomenon of reaction intermediates disappears, and the Nyquist plane is mainly composed of two capacitive arcs in the high frequency range and low frequency range respectively. The former originates from the original corroded surface, while the latter from the newly formed interface by exfoliation corrosion (EXCO). With the increased immersion time, the high frequency capacitance arc decreases gradually, while the low frequency capacitance arc increases gradually. From the beginning of immersion up to 9 hours, charge transfer resistance gradually decreases, illustrating the acceleration of the corrosion rate, whereas the proton concentration decreases steeply, indicating the cathodic process is pre-dominant. Then the corrosion rate decreases gradually corresponding to the exhausting of proton ions. The results also show that the exfoliation corrosion is developed from pitting corrosion through intergranular corrosion to general corrosion at the end. [source]


An investigation of human brain tumour lipids by high-resolution magic angle spinning 1H MRS and histological analysis

NMR IN BIOMEDICINE, Issue 7 2008
Kirstie S. Opstad
Abstract NMR-visible lipid signals detected in vivo by 1H MRS are associated with tumour aggression and believed to arise from cytoplasmic lipid droplets. High-resolution magic angle spinning (HRMAS) 1H MRS and Nile Red staining were performed on human brain tumour biopsy specimens to investigate how NMR-visible lipid signals relate to viable cells and levels of necrosis across different grades of glioma. Presaturation spectra were acquired from 24 adult human astrocytoma biopsy samples of grades II (8), III (2) and IV (14) using HRMAS 1H MRS and quantified using LCModel to determine lipid concentrations. Each biopsy sample was then refrozen, cryostat sectioned, and stained with Nile Red, to determine the number of lipid droplets and droplet size distribution, and with Haematoxylin and Eosin, to determine cell density and percentage necrosis. A strong correlation (R,=,0.92, P,<,0.0001) was found between the number of Nile Red-stained droplets and the ,1.3,ppm lipid proton concentration by 1H MRS. Droplet sizes ranged from 1 to 10,µm in diameter, and the size distribution was constant independent of tumour grade. In the non-necrotic biopsy samples, the number of lipid droplets correlated with cell density, whereas in the necrotic samples, there were greater numbers of droplets that showed a positive correlation with percentage necrosis. The correlation between 1H MRS lipid signals and number of Nile Red-stained droplets, and the presence of lipid droplets in the non-necrotic biopsy specimens provide good evidence that the in vivo NMR-visible lipid signals are cytoplasmic in origin and that formation of lipid droplets precedes necrosis. Copyright © 2008 John Wiley & Sons, Ltd. [source]