Protein Translocation (protein + translocation)

Distribution by Scientific Domains


Selected Abstracts


Light-Induced Control of Protein Translocation by the SecYEG Complex,

ANGEWANDTE CHEMIE, Issue 40 2010
Francesco Bonardi
Schließt die Pore! Ein organochemischer Photoschalter wurde in zwei transmembranäre Segmente eingeführt, die die laterale Öffnung der proteinleitenden Pore in Bakterienmembranen umschließen. Reversibles Schalten des Azobenzols zwischen der trans - und cis -Konfiguration durch Bestrahlung mit sichtbarem und UV-Licht erzwingt das Öffnen und Schließen der Pore (siehe Schema). [source]


Protein Import Into Mitochondria

IUBMB LIFE, Issue 3-5 2001
Stefan A. Paschen
Abstract Most mitochondrial proteins are encoded by the nuclear genome and thus have to be imported into mitochondria from the cytosol. Protein translocation across and into the mitochondrial membranes is a multistep process facilitated by the coordinated action of at least four specialized translocation systems in the outer and inner membranes of mitochondria. The outer membrane contains one general translocase, the TOM complex, whereas three distinct translocases are located in the inner membrane, which facilitates translocation of different classes of preproteins. The TIM23 complex mediates import of matrix-targeted preproteins with N -terminal presequences, whereas hydrophobic preproteins with internal targeting signals are inserted into the inner membrane via the TIM22 complex. The OXA translocase mediates the insertion of preproteins from the matrix space into the inner membrane. This review focuses on the structural organization and function of the import machinery of the model organisms of Saccharomyces cerevisiae and Neurospora crassa . In addition, the molecular basis of a new human mitochondrial disorder is discussed, the Mohr-Tranebjaerg syndrome. This is the first known disease, which is caused by an impaired mitochondrial protein import machinery leading to progressive neurodegeneration. [source]


Preliminary X-ray crystallographic studies of yeast mitochondrial protein Tom70p

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 3 2006
Yunkun Wu
Protein translocations across mitochondrial membranes play critical roles in mitochondrion biogenesis. Protein transport from the cell cytosol to the mitochondrial matrix is carried out by the translocase of the outer membrane (TOM) complex and the translocase of the inner membrane (TIM) complexes. Tom70p is an important TOM-complex member and a major surface receptor of the protein-translocation machinery in the outer mitochondrial membrane. To investigate the mechanism by which Tom70p functions to deliver the mitochondrial protein precursors, the cytosolic fragment of yeast Tom70p (cTom70p) was crystallized. The crystals diffract to 3.2,Å using a synchrotron X-­ray source and belong to space group P21, with unit-cell parameters a = 44.89, b = 168.78, c = 83.41,Å, , = 90.00, , = 102.74, , = 90.00°. There are two Tom70p molecules in one asymmetric unit, which corresponds to a solvent content of approximately 51%. Structure determination by MAD methods is under way. [source]


Heat shock protein translocation and expression response is attenuated in response to repeated eccentric exercise

ACTA PHYSIOLOGICA, Issue 3 2009
K. Vissing
Abstract Aim:, This study hypothesized that heat shock protein (HSP) translocation and upregulation is more probable to occur after eccentric exercise than after concentric exercise or repeated eccentric exercise. Methods:, Fourteen young, healthy, untrained male subjects completed two bench-stepping exercise bouts with 8 weeks between bouts, and were compared with a control group (n = 6). Muscle biopsies collected from m. vastus lateralis of both legs prior to and at 3 h, 24 h and 7 days after exercise were quantified for mRNA levels and/or for HSP27, ,,-crystallin and inducible HSP70 content in cytosolic and cytoskeletal protein fractions. Results:, The first bout of exercise reduced muscle strength and increased muscle soreness predominantly in the eccentric leg (P < 0.05). These responses were attenuated after the repeated eccentric exercise bout (P < 0.05), suggesting a repeated bout adaptation. Increases in inducible HSP70 and HSP27 protein content in cytoskeletal fractions were observed exclusively after eccentric exercise (P < 0.05). For HSP27, an approx. 10-fold upregulation after first-bout eccentric exercise was attenuated to a an approximately fourfold upregulation after the repeated eccentric exercise bout. mRNA levels for HSP70, HSP27 and ,,-crystallin were upregulated within approximately two to fourfold ranges at time points 3 and 24 h post-exercise (P < 0.05). This upregulation was induced exclusively by eccentric exercise but with a tendency to attenuated expression 3 h after the repeated eccentric exercise bout. Conclusion:, Our results show that HSP translocation and expression responses are induced by muscle damaging exercise, and suggest that such HSP responses are closely related to the extent of muscle damage. [source]


Cross-presentation of a human tumor antigen delivered to dendritic cells by HSV VP22-mediated protein translocation

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2004
Arvind Chhabra
Abstract Dendritic cells (DC) capture antigens from apoptotic and/or necrotic tumor cells and cross-present them to T,cells, and various ways of delivering tumor antigens to DC in vitro and in vivo are being pursued. Since fusions of antigenic proteins with the HSV integument protein VP22 are capable of intercellular trafficking, this approach has been exploited for delivery of antigens to antigen-presenting cells. Adenoviral vectors were used to express the tumor-associated-but-self-antigen MART-1 fused to HSV VP22 in MART-1-negative A375 melanoma cells and in DC. When expressed in A375 cells and allowed to spread to DC across a transwell barrier, the VP22-MART-1 fusion protein localized to both early and late endosomal structures of the DC. The DC loaded with the VP22-MART-1 fusion by intercellular trafficking efficiently presented the MART-127,35 epitope to MART-127,35 -specific CTL. Furthermore, transloaded DC were capable of expanding the population of MART-127,35 -specific CTL. Thus, a tumor antigen acquired by intercellular trafficking can be cross-presented by DC. This experimental approach should therefore be useful not only for studying the mechanism of cross-presentation but also for vaccine development. [source]


Defective translocation of a signal sequence mutant in a prlA4 suppressor strain of Escherichia coli

FEBS JOURNAL, Issue 22 2002
Hendrik Adams
In the accompanying paper [Adams, H., Scotti, P.A., de Cock, H., Luirink, J. & Tommassen, J. (2002) Eur. J. Biochem.269, 5564,5571], we showed that the precursor of outer-membrane protein PhoE of Escherichia coli with a Gly to Leu substitution at position ,10 in the signal sequence (G-10L) is targeted to the SecYEG translocon via the signal-recognition particle (SRP) route, instead of via the SecB pathway. Here, we studied the fate of the mutant precursor in a prlA4 mutant strain. prlA mutations, located in the secY gene, have been isolated as suppressors that restore the export of precursors with defective signal sequences. Remarkably, the G-10L mutant precursor, which is normally exported in a wild-type strain, accumulated strongly in a prlA4 mutant strain. In vitro cross-linking experiments revealed that the precursor is correctly targeted to the prlA4 mutant translocon. However, translocation across the cytoplasmic membrane was defective, as appeared from proteinase K-accessibility experiments in pulse-labeled cells. Furthermore, the mutant precursor was found to accumulate when expressed in a secY40 mutant, which is defective in the insertion of integral-membrane proteins but not in protein translocation. Together, these data suggest that SecB and SRP substrates are differently processed at the SecYEG translocon. [source]


Biogenesis of the yeast frataxin homolog Yfh1p

FEBS JOURNAL, Issue 11 2000
Tim44-dependent transfer to mtHsp70 facilitates folding of newly imported proteins in mitochondria
Tim44 is an essential component of the mitochondrial inner membrane protein import machinery. In this study we asked if Tim44 is of relevance in intramitochondrial protein folding. We investigated the role of Tim44 in the biogenesis of the authentic mitochondrial protein Yfh1p, the yeast homolog of mammalian frataxin, which was recently implicated in Friedreich ataxia. After inactivation of Tim44, binding of mitochondrial heat shock protein (mtHsp)70 to translocating Yfh1p and subsequent folding to the native state was nearly completely blocked. Residual amounts of imported Yfh1p showed an increased tendency to aggregate. To further characterize the functions of Tim44 in the matrix, we imported dihydrofolate reductase (DHFR) as a model protein. Depletion of Tim44 allowed import of DHFR, although folding of the newly imported DHFR was delayed. Moreover, the depletion of Tim44 caused a strongly reduced binding of mtHsp70 and Mge1 to the translocating polypeptide. Subsequent dissociation of mtHsp70 from imported DHFR was delayed, indicating that mtHsp70,substrate complexes formed independently of Tim44 differ from the complexes that form under the control of Tim44. We conclude that Tim44 not only plays a role in protein translocation but also in the pathways of mitochondrial protein folding. [source]


Preserving organelle vitality: peroxisomal quality control mechanisms in yeast

FEMS YEAST RESEARCH, Issue 6 2009
Eda Bener Aksam
Abstract Cellular proteins and organelles such as peroxisomes are under continuous quality control. Upon synthesis in the cytosol, peroxisomal proteins are kept in an import-competent state by chaperones or specific proteins with an analogous function to prevent degradation by the ubiquitin,proteasome system. During protein translocation into the organelle, the peroxisomal targeting signal receptors (Pex5, Pex20) are also continuously undergoing quality control to enable efficient functioning of the translocon (RADAR pathway). Even upon maturation of peroxisomes, matrix enzymes and peroxisomal membranes remain subjected to quality control. As a result of their oxidative metabolism, peroxisomes are producers of reactive oxygen species (ROS), which may damage proteins and lipids. To counteract ROS-induced damage, yeast peroxisomes contain two important antioxidant enzymes: catalase and an organelle-specific peroxiredoxin. Additionally, a Lon-type protease has recently been identified in the peroxisomal matrix, which is capable of degrading nonfunctional proteins. Finally, cellular housekeeping processes keep track of the functioning of peroxisomes so that dysfunctional organelles can be quickly removed via selective autophagy (pexophagy). This review provides an overview of the major processes involved in quality control of yeast peroxisomes. [source]


Roles of partly unfolded conformations in macromolecular self-assembly

GENES TO CELLS, Issue 1 2001
Keiichi Namba
From genes to cells there are many steps of hierarchical increments in building up complex frameworks that provide intricate networks of macromolecular interactions, through which cellular activities such as gene expression, signal processing, energy transduction and material conversion are dynamically organized and regulated. The self-assembly of macromolecules into large complexes is one such important step, but this process is by no means a simple aggregation of macromolecules with predefined, rigid complementary structures. In many cases the component molecules undergo either domain rearrangements or folding of disordered portions, which occurs only following binding to their correct partners. The partial disorder is used in some cases to prevent spontaneous assembly at inappropriate times or locations. It is also often used for finely tuning the equilibrium and activation energy of reversible binding. In other cases, such as protein translocation across membranes, an unfolded terminus appears to be the prerequisite for the process as an initiation signal, as well as the physical necessity to be taken into narrow channels. Self-assembly processes of viruses and bacterial flagella are typical examples where the induced folding of disordered chains plays a key role in regulating the addition of new components to a growing assembly. Various aspects of mechanistic roles of natively unfolded conformations of proteins are overviewed and discussed in this short review. [source]


C-ring requirement in flagellar type III secretion is bypassed by FlhDC upregulation

MOLECULAR MICROBIOLOGY, Issue 2 2010
Marc Erhardt
Summary The cytoplasmic C-ring of the flagellum consists of FliG, FliM and FliN and acts as an affinity cup to localize secretion substrates for protein translocation via the flagellar-specific type III secretion system. Random T-POP transposon mutagenesis was employed to screen for insertion mutants that allowed flagellar type III secretion in the absence of the C-ring using the flagellar type III secretion system-specific hook,,-lactamase reporter (Lee and Hughes, 2006). Any condition resulting in at least a twofold increase in flhDC expression was sufficient to overcome the requirement for the C-ring and the ATPase complex FliHIJ in flagellar type III secretion. Insertions in known and unknown flagellar regulatory loci were isolated as well as chromosomal duplications of the flhDC region. The twofold increased flhDC mRNA level coincided in a twofold increase in the number of hook-basal bodies per cell as analysed by fluorescent microscopy. These results indicate that the C-ring functions as a nonessential affinity cup-like structure during flagellar type III secretion to enhance the specificity and efficiency of the secretion process. [source]


Computer simulations of protein translocation

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 9 2006
Serdal Kirmizialtin
Many biological processes involve translocation of protein molecules across pores. Shown in the cover picture of this issue is a snapshot from a computer simulation of the protein ubiquitin that is forced mechanically to enter a narrow cylindrical pore. As the force f applied at one end of the molecule pulls it along the pore, the confinement within the pore causes the protein to unfold. The ensuing changes in the protein's entropy and energy lead to a free energy barrier, which has to be surmounted for the translocation to occur. The magnitude of this barrier is estimated by Kirmizialtin et al. in the article [1]. The plot was generated by using the PyMol software. This paper is a presentation from the 1st Institute for the Theory of Advanced Materials in Information Technology Workshop on Computational Materials and Electronics held 20,22 October 2005 in Austin, USA. The present issue has been guest-edited by James Chelikowsky and Alex Demkov. The background of the cover shows a photograph of the tower of the University of Texas at Austin. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


In vivo analysis of the lumenal binding protein (BiP) reveals multiple functions of its ATPase domain

THE PLANT JOURNAL, Issue 6 2007
Christopher James Snowden
Summary The endoplasmic reticulum (ER) chaperone binding protein (BiP) binds exposed hydrophobic regions of misfolded proteins. Cycles of ATP hydrolysis and nucleotide exchange on the ATPase domain were shown to regulate the function of the ligand-binding domain in vitro. Here we show that ATPase mutants of BiP with defective ATP-hydrolysis (T46G) or ATP-binding (G235D) caused permanent association with a model ligand, but also interfered with the production of secretory, but not cytosolic, proteins in vivo. Furthermore, the negative effect of BiP(T46G) on secretory protein synthesis was rescued by increased levels of wild-type BiP, whereas the G235D mutation was dominant. Unexpectedly, expression of a mutant BiP with impaired ligand binding also interfered with secretory protein production. Although mutant BiP lacking its ATPase domain had no detrimental effect on ER function, expression of an isolated ATPase domain interfered with secretory protein synthesis. Interestingly, the inhibitory effect of the isolated ATPase was alleviated by the T46G mutation and aggravated by the G235D mutation. We propose that in addition to its role in ligand release, the ATPase domain can interact with other components of the protein translocation and folding machinery to influence secretory protein synthesis. [source]


Sub-lethal heat shock induces plasma membrane translocation of 70-kDa heat shock protein in viable, but not in apoptotic, U-937 leukaemia cells

APMIS, Issue 3 2010
ELENA B. LASUNSKAIA
Lasunskaia EB, Fridlianskaia I, Arnholdt AV, Kanashiro M, Guzhova I, Margulis B. Sub-lethal heat shock induces plasma membrane translocation of 70-kDa heat shock protein in viable, but not in apoptotic, U-937 leukaemia cells. APMIS 2010; 118: 179,87. Heat shock protein 70 kDa, Hsp70, is an important intracellular factor that protects cells from stress. Unusual plasma membrane expression of Hsp70, observed in some cancer cells, contributes to the cell's recognition and elimination by the immune system. Induction of apoptosis in cancer cells was demonstrated to increase Hsp70 translocation to the surface membrane, enhancing immunogenic effects through the stimulation of dendritic cells. As hyperthermia is proposed as a method of choice for anti-cancer therapy, we examined whether apoptosis induction by heat shock enhances Hsp70 membrane translocation in U-937 leukaemia cells. Cells were exposed to sub-lethal heat shock, and intracellular and membrane-bound Hsp70 expression was evaluated in apoptotic and viable cell sub-populations, employing flow cytometry and immunofluorescence. Heat shock induced Hsp70 membrane translocation in the viable cells that were able to enhance Hsp70 production upon heating, but not in the cells undergoing apoptosis that continued to express low basal levels of the intracellular protein. Data suggest that the protein translocation was associated with the increasing Hsp70 content rather than the apoptotic process. Apoptosis does not contribute to externalization of Hsp70, at least in the cells with low levels of this protein. [source]


Problem-solving Test: ,1-antitrypsin deficiency

BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION, Issue 4 2007
An example for a protein folding disease
Terms to be familiar with before you start to solve the test: protein conformation, protein folding, proteases, protein synthesis, protein glycosylation, glycoproteins, N-linked and O-linked oligosaccharides, endoplasmic reticulum, Golgi complex, secretory pathway, microsomes, pulse/chase labeling, SDS-polyacrylamide gel electrophoresis, immunoprecipitation, chaperones, protein translocation. [source]


Preliminary X-ray crystallographic studies of mouse UPR responsive protein P58(IPK) TPR fragment

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 2 2008
Jiahui Tao
Endoplasmic reticulum (ER) stress induces the unfolded protein response (UPR), which can promote protein folding and misfolded protein degradation and attenuate protein translation and protein translocation into the ER. P58(IPK) has been proposed to function as a molecular chaperone to maintain protein-folding homeostasis in the ER under normal and stressed conditions. P58(IPK) contains nine TPR motifs and a C-terminal J-domain within its primary sequence. To investigate the mechanism by which P58(IPK) functions to promote protein folding within the ER, a P58(IPK) TPR fragment without the C-terminal J-domain was crystallized. The crystals diffract to 2.5,Å resolution using a synchrotron X-ray source. The crystals belong to space group P21, with unit-cell parameters a = 83.53, b = 92.75, c = 84.32,Å, , = 90.00, , = 119.36, , = 90.00°. There are two P58(IPK) molecules in the asymmetric unit, which corresponds to a solvent content of approximately 60%. Structure determination by MAD methods is under way. [source]