Protein Therapeutics (protein + therapeutics)

Distribution by Scientific Domains


Selected Abstracts


Controlling Affinity Binding with Peptide-Functionalized Poly(ethylene glycol) Hydrogels

ADVANCED FUNCTIONAL MATERIALS, Issue 14 2009
Chien-Chi Lin
Abstract Poly(ethylene glycol) (PEG) hydrogels functionalized with peptide moieties have been widely used in regenerative medicine applications. While many studies have suggested the importance of affinity binding within PEG hydrogels, the relationships between the structures of the peptide motifs and their binding to protein therapeutics remain largely unexplored, especially in the recently developed thiol-acrylate photopolymerization systems. Herein, Förster resonance energy transfer (FRET) and thiol-acrylate photopolymerizations are employed to investigate how the architectures of affinity peptides in crosslinked hydrogels affect their binding to diffusible proteins. The binding between diffusible streptavidin and biotinylated peptide immobilized to PEG hydrogel network was used as a model system to reveal the interplay between affinity binding and peptide sequences/architectures. In addition, peptides with different structures are designed to enhance affinity binding within PEG hydrogels and to provide tunable affinity-based controlled delivery of basic fibroblast growth factor (bFGF). This study demonstrates the importance of affinity binding in controlling the availability of hydrogel-encapsulated proteins and provides strategies for enhancing affinity binding of protein therapeutics to bound peptide moieties in thiol-acrylate photopolymerized PEG hydrogels. The results presented herein should be useful to the design and fabrication of hydrogels that retain and exhibit sustained release of growth factors for promoting tissue regeneration. [source]


Pharmacokinetic aspects of biotechnology products

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 9 2004
Lisa Tang
Abstract In recent years, biotechnologically derived peptide and protein-based drugs have developed into mainstream therapeutic agents. Peptide and protein drugs now constitute a substantial portion of the compounds under preclinical and clinical development in the global pharmaceutical industry. Pharmacokinetic and exposure/response evaluations for peptide and protein therapeutics are frequently complicated by their similarity to endogenous peptides and proteins as well as protein nutrients. The first challenge frequently comes from a lack of sophistication in various analytical techniques for the quantification of peptide and protein drugs in biological matrices. However, advancements in bioassays and immunoassays,along with a newer generation of mass spectrometry-based techniques,can often provide capabilities for both efficient and reliable detection. Selection of the most appropriate route of administration for biotech drugs requires comprehensive knowledge of their absorption characteristics beyond physicochemical properties, including chemical and metabolic stability at the absorption site, immunoreactivity, passage through biomembranes, and active uptake and exsorption processes. Various distribution properties dictate whether peptide and protein therapeutics can reach optimum target site exposure to exert the intended pharmacological response. This poses a potential problem, especially for large protein drugs, with their typically limited distribution space. Binding phenomena and receptor-mediated cellular uptake may further complicate this issue. Elimination processes,a critical determinant for the drug's systemic exposure,may follow a combination of numerous pathways, including renal and hepatic metabolism routes as well as generalized proteolysis and receptor-mediated endocytosis. Pharmacokinetic/pharmacodynamic (PK/PD) correlations for peptide and protein-based drugs are frequently convoluted by their close interaction with endogenous substances and physiologic regulatory feedback mechanisms. Extensive use of pharmacokinetic and exposure/response concepts in all phases of drug development has in the past been identified as a crucial factor for the success of a scientifically driven, evidence-based, and thus accelerated drug development process. Thus, PK/PD concepts are likely to continue and expand their role as a fundamental factor in the successful development of biotechnologically derived drug products in the future. © 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:2184,2204, 2004 [source]


Splenic marginal zone antigen-presenting cells are critical for the primary allo-immune response to therapeutic factor VIII in hemophilia A

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 11 2009
A. NAVARRETE
Summary.,Background: Alloimmune responses to intravenously administered protein therapeutics are the most common cause of failure of replacement therapy in patients with defective levels of endogenous proteins. Such a situation is encountered in some patients with hemophilia A, who develop inhibitory anti-factor (F)VIII alloantibodies after administration of FVIII to treat hemorrhages. Objectives: The nature of the secondary lymphoid organs involved in the initiation of immune responses to human therapeutic has not been studied. We therefore investigated this in the case of FVIII, a self-derived exogenous protein therapeutic. Methods: The distribution of intravenously administered FVIII was followed after FVIII-deficient mice were injected with radiolabeled FVIII and using immunohistochemistry. The role of the spleen and antigen-presenting cells (APC) in the onset of the anti-FVIII immune response was analyzed upon splenectomy or treatment of the mice with APC-depleting compounds. Results: FVIII preferentially accumulated in the spleen at the level of metallophilic macrophages in the marginal zone (MZ). Surgical removal of the spleen or selective in vivo depletion of macrophages and CD11c-positive CD8,-negative dendritic cells resulted in a drastic reduction in anti-FVIII immune responses. Conclusions: Using FVIII-deficient mice as a model for patients with hemophilia A, and human pro-coagulant FVIII as a model for immunogenic self-derived protein therapeutics, our results highlight the importance of the spleen and MZ APCs in the initiation of immune responses to protein therapeutics. Identification of the receptors implicated in retention of protein therapeutics in the MZ may pave the way towards novel strategies aimed at reducing their immunogenicity. [source]


Crystallization and preliminary X-ray analysis of the complexes between a Fab and two forms of human insulin-like growth factor II

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 9 2009
Janet Newman
Elevated expression of insulin-like growth factor II (IGF-II) is frequently observed in a variety of human malignancies, including breast, colon and liver cancer. As IGF-II can deliver a mitogenic signal through both the type 1 insulin-like growth factor receptor (IGF-IR) and an alternately spliced form of the insulin receptor (IR-A), neutralizing the biological activity of this growth factor directly is an attractive therapeutic option. One method of doing this would be to find antibodies that bind tightly and specifically to the peptide, which could be used as protein therapeutics to lower the peptide levels in vivo and/or to block the peptide from binding to the IGF-IR or IR-A. To address this, Fabs were selected from a phage-display library using a biotinylated precursor form of the growth factor known as IGF-IIE as a target. Fabs were isolated that were specific for the E-domain C-terminal extension and for mature IGF-II. Four Fabs selected from the library were produced, complexed with IGF-II and set up in crystallization trials. One of the Fab,IGF-II complexes (M64-F02,IGF-II) crystallized readily, yielding crystals that diffracted to 2.2,Å resolution and belonged to space group P212121, with unit-cell parameters a = 50.7, b = 106.9, c = 110.7,Å. There was one molecule of the complete complex in the asymmetric unit. The same Fab was also crystallized with a longer form of the growth factor, IGF-IIE. This complex crystallized in space group P212121, with unit-cell parameters a = 50.7, b = 107, c = 111.5,Å, and also diffracted X-rays to 2.2,Å resolution. [source]


Molecular engineering of exocytic vesicle traffic enhances the productivity of Chinese hamster ovary cells

BIOTECHNOLOGY & BIOENGINEERING, Issue 4 2009
Ren-Wang Peng
Abstract A complex vesicle trafficking system manages the precise and regulated distribution of proteins, membranes and other molecular cargo between cellular compartments as well as the secretion of (heterologous) proteins in mammalian cells. Sec1/Munc18 (SM) proteins are key components of the system by regulating membrane fusion. However, it is not clear how SM proteins contribute to the overall exocytosis. Here, functional analysis of the SM protein Sly1 and Munc18c suggested a united, positive impact upon SNARE-based fusion of ER-to-Golgi- and Golgi-to-plasma membrane-addressed exocytic vesicles and increased the secretory capacity of different therapeutic proteins in Chinese hamster ovary cells up to 40 pg/cell/day. Sly1- and Munc18c-based vesicle traffic engineering cooperated with Xbp-1-mediated ER/Golgi organelle engineering. Our study supports a model for united function of SM proteins in stimulating vesicle trafficking machinery and provides a generic secretion engineering strategy to improve biopharmaceutical manufacturing of important protein therapeutics. Biotechnol. Bioeng. 2009;102: 1170-1181. © 2008 Wiley Periodicals, Inc. [source]