Protein Pathway (protein + pathway)

Distribution by Scientific Domains


Selected Abstracts


Abnormal venous and arterial patterning in chordin mutants

DEVELOPMENTAL DYNAMICS, Issue 9 2007
Emmanučle C. Délot
Abstract Classic dye injection methods yielded amazingly detailed images of normal and pathological development of the cardiovascular system. However, because these methods rely on the beating heart of diffuse the dyes, the vessels visualized have been limited to the arterial tree, and our knowledge of vein development is lagging. In order to solve this problem, we injected pigmented methylsalicylate resins in mouse embryos after they were fixed and made transparent. This new technique allowed us to image the venous system and prompted the discovery of multiple venous anomalies in Chord,/, mutant mice. Genetic inactivation of Chordin, an inhibitor of the Bone Morphogenetic Protein signaling pathway, results in neural crest defects affecting heart and neck organs, as seen in DiGeorge syndrome patients. Injection into the descending aorta of Chrd,/, mutants demonstrated how a very severe early phenotype of the aortic arches develops into persistent truncus arteriosus. In addition, injection into the atrium revealed several patterning defects of the anterior cardinal veins and their tributaries, including absence of segments, looping and midline defects. The signals that govern the development of the individual cephalic veins are unknown, but our results show that the Bone Morphogenetic Protein pathway is necessary for the process. Developmental Dynamics 236:2586,2593, 2007. © 2007 Wiley-Liss, Inc. [source]


A Bicyclic Monoterpene Diol and UVB Stimulate BRCA1 Phosphorylation in Human Keratinocytes,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 1 2003
Matthew T. Canning
ABSTRACT BRCA1 (breast cancer,associated gene 1) is a tumor suppressor gene that plays a role in DNA repair when phosphorylated. Many DNA-damaging agents including UVC and hydrogen peroxide have been shown to induce phosphorylation of BRCA1. Results of this study now show that both UVB and a bicyclic monoterpene diol (BMT diol) result in phosphorylation of BRCA1. This phosphorylation was maximal 2 h after treatment with either agent and declined to basal levels by 24 h. Inhibitor studies revealed that both UVB and the BMT diol phosphorylate BRCA1 through the FK506-binding protein,FKBP rapamycin-associated binding protein pathway, but the BMT diol also led to phosphorylation of BRCA1 through casein kinase II. This suggests that the signaling pathways for UVB and the BMT diol may diverge. Results of this study also show that the BMT diol stimulates the repair of UVB-induced cyclobutane pyrimidine dimers (CPD). Inhibitors of BMT diol,induced BRCA1 phosphorylation blocked the BMT diol,stimulated repair of CPD. This indicates that the BMT diol induces the phosphorylation of BRCA1, which, in turn, leads to an increase in repair of UVB-induced CPD. Therefore, this BMT diol may be useful for ameliorating the damaging effects of UVB. [source]


Tribble 3, a novel oxidized low-density lipoprotein-inducible gene, is induced via the activating transcription factor 4,C/EBP homologous protein pathway

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 1 2010
Yuan-Yuan Shang
Summary 1.,C/EBP homologueueueous protein (CHOP), an endoplasmic reticulum (ER) stress-inducible protein, has a critical role in regulation of the cell cycle and apoptosis by forming heterodimers with other C/EBP proteins. However, how CHOP function is regulated remains to be determined. The human homologue of Drosophila tribbles (TRIB3) is associated with CHOP and is upregulated by oxidized low-density lipoprotein (ox-LDL). The aim of the present study was to investigate the role of CHOP in ox-LDL-induced TRIB3 expression in macrophages. 2.,Human monocyte-derived macrophages were treated with various concentrations of ox-LDL (0, 2.5, 5, 10, 25 and 50 ,g/mL) or 2 ,g/mL tunicamycin for 0, 4, 8, 16, 24 and 48 h or were transfected with CHOP or TRIB3 expression plasmid and TRIB3 targeting short interference RNA (siRNA). The expression of CHOP and activating transcription factor 4 (ATF4) mRNA in treated cells was detected by quantitative real-time polymerase chain reaction (PCR). 3.,The expression of CHOP and ATF4 mRNA increased with increasing concentrations of ox-LDL and duration of time. The ox-LDL-induced expression of TRIB3 mRNA was upregulated later than the expression of CHOP and ATF4 mRNA. Overexpression of CHOP increased the mRNA expression of TRIB3, which was further increased in CHOP-overexpressing macrophages treated with ox-LDL. Overexpression of TRIB3 suppressed the expression of CHOP, whereas TRIB3 silencing increased CHOP expression following ox-LDL stimulation by a negative feedback mechanism. 4.,In conculsion, the expression of ATF4 and CHOP is upregulated by ox-LDL in a dose- and time-dependent manner in naturally differentiated human macrophages. Oxidized LDL induces TRIB3 expression via an ATF4/CHOP-dependent ER stress pathway. [source]


TBid mediated activation of the mitochondrial death pathway leads to genetic ablation of the lens in Xenopus laevis

GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 1 2007
D. Du Pasquier
Abstract Xenopus is a well proven model for a wide variety of developmental studies, including cell lineage. Cell lineage in Xenopus has largely been addressed by injection of tracer molecules or by micro-dissection elimination of blastomeres. Here we describe a genetic method for cell ablation based on the use of tBid, a direct activator of the mitochondrial apoptotic pathway. In mammalian cells, cross-talk between the main apoptotic pathways (the mitochondrial and the death domain protein pathways) involve the pro-death protein BID, the active form of which, tBID, results from protease truncation and translocation to mitochondria. In transgenic Xenopus, restricting tBID expression to the lens-forming cells enables the specific ablation of the lens without affecting the development of other eye structures. Thus, overexpression of tBid can be used in vivo as a tool to eliminate a defined cell population by apoptosis in a developing organism and to evaluate the degree of autonomy or the inductive effects of a specific tissue during embryonic development. genesis 45:1,10, 2007. © 2006 Wiley-Liss, Inc. [source]


Array-based proteomics: mapping of protein circuitries for diagnostics, prognostics, and therapy guidance in cancer

THE JOURNAL OF PATHOLOGY, Issue 5 2006
C Gulmann
Abstract The human proteome, due to the enormity of post-translational permutations that result in large numbers of isoforms, is much more complex than the genome and alterations in cancer can occur in ways that are not predictable by translational analysis alone. Proteomic analysis therefore represents a more direct way of investigating disease at the individual patient level. Furthermore, since most novel therapeutic targets are proteins, proteomic analysis potentially has a central role in patient care. At the same time, it is becoming clear that mapping entire networks rather than individual markers may be necessary for robust diagnostics as well as tailoring of therapy. Consequently, there is a need for high-throughput multiplexed proteomic techniques, with the capability of scanning multiple cases and analysing large numbers of endpoints. New types of protein arrays combined with advanced bioinformatics are currently being used to identify molecular signatures of individual tumours based on protein pathways and signalling cascades. It is envisaged that analysing the cellular ,circuitry' of ongoing molecular networks will become a powerful clinical tool in patient management. Copyright © 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]


Importance of AOX pathway in optimizing photosynthesis under high light stress: role of pyruvate and malate in activating AOX

PHYSIOLOGIA PLANTARUM, Issue 1 2010
Challabathula Dinakar
The present study shows the importance of alternative oxidase (AOX) pathway in optimizing photosynthesis under high light (HL). The responses of photosynthesis and respiration were monitored as O2 evolution and O2 uptake in mesophyll protoplasts of pea pre-incubated under different light intensities. Under HL (3000 µmol m,2 s,1), mesophyll protoplasts showed remarkable decrease in the rates of NaHCO3 -dependent O2 evolution (indicator of photosynthetic carbon assimilation), while decrease in the rates of respiratory O2 uptake were marginal. While the capacity of AOX pathway increased significantly by two fold under HL, the capacity of cytochrome oxidase (COX) pathway decreased by >50% compared with capacities under darkness and normal light (NL). Further, the total cellular levels of pyruvate and malate, which are assimilatory products of active photosynthesis and stimulators of AOX activity, were increased remarkably parallel to the increase in AOX protein under HL. Upon restriction of AOX pathway using salicylhydroxamic acid (SHAM), the observed decrease in NaHCO3 -dependent O2 evolution or p -benzoquinone (BQ)-dependent O2 evolution [indicator of photosystem II (PSII) activity] and the increase in total cellular levels of pyruvate and malate were further aggravated/promoted under HL. The significance of raised malate and pyruvate levels in activation of AOX protein/AOX pathway, which in turn play an important role in dissipating excess chloroplastic reducing equivalents and sustenance of photosynthetic carbon assimilation to balance the effects of HL stress on photosynthesis, was depicted as a model. [source]