Protein Kinase Pathway (protein + kinase_pathway)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Protein Kinase Pathway

  • mitogen-activated protein kinase pathway


  • Selected Abstracts


    Coordination of development and metabolism in the pre-midblastula transition zebrafish embryo

    DEVELOPMENTAL DYNAMICS, Issue 7 2008
    Bryce A. Mendelsohn
    Abstract To define the mechanisms that coordinate early embryonic development and metabolism, we have examined the response of zebrafish embryos to anoxia before the midblastula transition. Our findings reveal that anoxic pre-midblastula transition embryos slow the cell cycle, arrest before the midblastula transition and can recover normally if restored to a normoxic environment. Analyses of respiratory rates reveal that pre-midblastula transition embryos are less reliant on oxidative phosphorylation than older embryos. Interestingly, arrest in anoxia occurs despite inhibition of zygotic transcription, revealing a central role for maternal factors in the response to energy limitation. Consistent with this concept, we demonstrate that the posttranslational energy-sensing AMP-activated protein kinase pathway is activated in anoxia in pre-midblastula transition embryos. Taken together, these findings demonstrate a maternal program capable of coordinating developmental rate and metabolism in the absence of transcription-based pathways or cell cycle checkpoints. Developmental Dynamics 237:1789,1798, 2008. © 2008 Wiley-Liss, Inc. [source]


    Role of the Slt2 mitogen-activated protein kinase pathway in cell wall integrity and virulence in Candida glabrata

    FEMS YEAST RESEARCH, Issue 3 2010
    Taiga Miyazaki
    Abstract The Slt2 mitogen-activated protein kinase pathway plays a major role in maintaining fungal cell wall integrity. In this study, we investigated the effects of SLT2 deletion and overexpression on drug susceptibility and virulence in the opportunistic fungal pathogen Candida glabrata. While the ,slt2 strain showed decreased tolerance to elevated temperature and cell wall-damaging agents, the SLT2 -overexpressing strain exhibited increased tolerance to these stresses. A mutant lacking Rlm1, a transcription factor downstream of Slt2, displayed a cell wall-associated phenotype intermediate to that of the ,slt2 strain. When RLM1 was overexpressed, micafungin tolerance was increased in the wild-type strain and partial restoration of the drug tolerance was observed in the ,slt2 background. It was also demonstrated that echinocandin-class antifungals were more effective against C. glabrata under acidic conditions or when used concurrently with the chitin synthesis inhibitor nikkomycin Z. Finally, in a mouse model of disseminated candidiasis, the deletion and overexpression of C. glabrata SLT2 resulted in mild decreases and increases, respectively, in the CFUs from murine organs compared with the wild-type strain. These fundamental data will help in further understanding the mechanisms of cell wall stress response in C. glabrata and developing more effective treatments using echinocandin antifungals in clinical settings. [source]


    Novel insights into the osmotic stress response of yeast

    FEMS YEAST RESEARCH, Issue 3 2002
    Willem H Mager
    Abstract Response to hyperosmolarity in the baker's yeast Saccharomyces cerevisiae has attracted a great deal of attention of molecular and cellular biologists in recent years, from both the fundamental scientific and applied viewpoint. Indeed the underlying molecular mechanisms form a clear demonstration of the intricate interplay of (environmental) signalling events, regulation of gene expression and control of metabolism that is pivotal to any living cell. In this article we briefly review the cellular response to conditions of hyperosmolarity, with focus on the high-osmolarity glycerol mitogen-activated protein kinase pathway as the major signalling route governing cellular adaptations. Special attention will be paid to the recent finding that in the yeast cell also major structural changes occur in order to ensure maintenance of cell integrity. The intriguing role of glycerol in growth of yeast under (osmotic) stress conditions is highlighted. [source]


    Hepatitis B virus/hepatitis C virus upregulate angiopoietin-2 expression through mitogen-activated protein kinase pathway

    HEPATOLOGY RESEARCH, Issue 10 2010
    Yanmei Li
    Aim:, To explore the molecular mechanism of hepatitis B virus (HBV)/hepatitis C virus (HCV) upregulate angiopoietin-2 (Ang-2) expression. Methods:, Reverse transcription polymerase chain reaction (RT,PCR), quantitative real-time (qRT),PCR and enzyme-linked immunosorbent assay (ELISA) analysis were used to measure the Ang-2 transcription and expression level. Reporter gene assays were used to determine the cis -element of the Ang-2 promoter. The specific inhibitors assay, immunofluorescence and western blot analysis were conducted to verify the signal pathway involved in the upregulation of Ang-2 expression. Results:, The level of transcription and expression of Ang-2 increased in the HepG2.2.15 and Con-1 cells. Reporter gene assays in HepG2.2.15 and Con-1 cells revealed that HBV/HCV could enhance Ang-2 promoter expression by activating AP-1 and Ets1. Analysis with specific inhibitors indicated that HBV/HCV upregulated the expression of Ang-2 through mitogen-activated protein kinase (MAPK) pathways. Conclusion:, This study illustrates a distinct mechanism by which a tumor virus modulates vasculature to promote tumorigenesis. [source]


    A p38 MAP kinase regulates the expression of the Aedes aegypti defensin gene in mosquito cells

    INSECT MOLECULAR BIOLOGY, Issue 4 2007
    R. Chen-Chih Wu
    Abstract An Aedes aegypti p38 (Aap38) mitogen-activated protein kinase was isolated and characterized in this study. The 1761 bp long full-length Aap38 cDNA encodes an open reading frame of 358 amino acids, exhibiting characteristics of Thr/Tyr dual kinase specificities. We showed that bacteria activate both the kinase activity of Aap38 and the expression of the Aedes aegypti defensin A (AaDefA) gene, which is inhibited by a p38 kinase inhibitor SB203580 and dsRNA interference of Aap38. A similar result was obtained by a reporter construct containing the AaDefA regulatory region linked to Ds-Red. The lipopolysaccharide-activated reporter gene was inhibited by SB203580. In addition, Aap38 translocated to the nucleus after lipopolysaccharide induction. Our findings suggest that the p38 protein kinase pathway is involved in the antibacterial peptide synthesis in mosquitoes. [source]


    Prostaglandin E2 -Mediated Anabolic Effect of a Novel Inhibitor of Phosphodiesterase 4, XT-611, in the In Vitro Bone Marrow Culture,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2003
    Ken-Ichi Miyamoto
    Abstract The mechanism of osteoblast formation by a novel PDE4 inhibitor, XT-611, was studied in the in vitro bone marrow culture system. The compound potentiated the osteoblast differentiation through accumulation of cyclic AMP after autocrine stimulation of EP4 receptor by PGE2 in pro-osteoblastic cells. Introduction: We previously reported that inhibitors of phosphodiesterase (PDE)4 isoenzyme increase osteoblast formation in an in vitro bone marrow culture system and inhibit bone loss in animal osteoporosis models. Here we investigated the mechanism of the effect of a novel PDE4 inhibitor, 3,4-dipropyl-4,5,7,8-tetrahydro-3H -imidazo[1,2- i]-purin-5-one (XT-611), on osteoblast formation in the in vitro bone marrow culture system. Materials and Methods: Rodent bone marrow cells were cultured in the presence of 0.2 mM ascorbic acid phosphate ester, 1 mM ,-glycerophosphate, and 10 nM dexamethasone for 10 days. Drug treatments were done for 24 h on day 3 of culture. Results: PDE4 inhibitors, including XT-611, but not PDE3 and PDE5 inhibitors, increased mineralized nodule formation in rat and mouse bone marrow cell cultures. During culture of the bone marrow cells, prostaglandin E2 (PGE2) production increased with a peak on day 4, but the increase was completely inhibited by indomethacin, an unselective cyclo-oxygenase (COX) inhibitor. Spontaneous and XT-611-induced mineralized-nodule formation was also inhibited by indomethacin and COX-2 inhibitors, in a similar potential. Alkaline phosphatase-positive nodule formation in the absence or presence of XT-611 was inhibited by an antagonist of EP4 receptor, AH23848B, and synergistically potentiated by 11-deoxy-PGE1, but it was not influenced by other EP antagonists and agonists examined. The expression of PDE4 and EP4 mRNAs was observed in bone marrow cells. The effect of XT-611 was also confirmed to involve an increase of cyclic AMP and the cyclic AMP-dependent protein kinase pathway. Conclusion: These results suggest that PGE2 stimulates differentiation of osteoblast progenitor cells through the EP4 receptor in an autocrine manner, and the PDE4 inhibitor potentiates the differentiation by inhibiting hydrolysis of cyclic AMP in the cells. [source]


    Inhibition of low density lipoprotein receptor expression by long-term exposure to phorbol ester via p38 mitogen-activated protein kinase pathway

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2005
    Jiyoung Oh
    Abstract The proximal region ,234 to (+58 bp) of low-density lipoprotein receptor (LDLR) is responsible for its up-regulation by sterol regulatory element binding protein (SREBP). However, the mechanism of sterol-independent repression of LDLR has not been determined yet. In this study, we observed that there was an early induction and a later repression of LDLR by phorbol ester (PMA) in SK-Hep1 hepatocarcinoma cells and investigated the mechanisms through which PMA repressed LDLR transcription. SK-Hep1 cells were exposed to PMA and LDLR mRNA was evaluated by RT-PCR and Northern blot analysis. The effect of phorbol ester on LDLR transcriptional activity was studied using transient transfection of LDLR promoter-luciferase constructs. Overexpression of N-SREBP-2, a dominant positive SREBP2, did not reverse the PMA-repressed LDLR promoter activity. Serial deletion of LDLR promoter revealed that the region between ,1,563 and ,1,326 was responsible for the repression. The pretreatment with SB202190, an inhibitor for p38 mitogen-activated protein kinase pathway (p38-MAPK), but not other signaling inhibitors, reversed the PMA-induced repression. The 24 h-treatment with PMA efficiently arrested the SK-Hep1 cell cycle at G0/G1 as demonstrated by FACS analysis and decreased the 3H-thymidine incorporation. The PMA-induced repression of LDLR transcription may be exerted by the factor(s), not SREBP2, induced or modified by p38-MAPK-mediated signaling pathway and associated with cell cycle blockage. © 2005 Wiley-Liss, Inc. [source]


    Constitutive activation of the mitogen-activated protein kinase pathway impairs vitamin D signaling in human prostate epithelial cells

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2010
    Zhentao Zhang
    We studied the effect of prolonged activation of mitogen-activated protein kinase (MAPK) signaling on 1,25 dihydroxyvitamin D (1,25(OH)2D3) action in the immortalized human prostate epithelial cell line RWPE1 and its Ki-Ras transformed clone RWPE2. 1,25(OH)2D3 -treatment caused growth arrest and induced gene expression in both cell lines but the response was blunted in RWPE2 cells. Vitamin D receptor (VDR) levels were lower in RWPE2 cells but VDR over-expression did not increase vitamin-D-mediated gene transcription in either cell line. In contrast, MAPK inhibition restored normal vitamin D transcriptional responses in RWPE2 cells and MAPK activation with constitutively active MEK1R4F reduced vitamin-D-regulated transcription in RWPE1 cells. 1,25(OH)2D3 -mediated transcription depends upon the VDR and its heterodimeric partner the retinoid X receptor (RXR) so we studied whether changes in the VDR,RXR transcription complex occur in response to MAPK activation. Mutation of putative phosphorylation sites in the activation function 1 (AF-1) domain (S32A, T82A) of RXR, restored 1,25(OH)2D3 -mediated transactivation in RWPE2 cells. Mammalian two-hybrid and co-immunoprecipitation assays revealed a vitamin-D-independent interaction between steroid receptor co-activator-1 (SRC-1) and RXR, that was reduced by MAPK activation and was restored in RWPE2 cells by mutating S32 and T82 in the RXR, AF-1 domain. Our data show that a common contributor to cancer development, prolonged activation of MAPK signaling, impairs 1,25(OH)2D3 -mediated transcription in prostate epithelial cells. This is due in part to the phosphorylation of critical amino acids in the RXR, AF-1 domain and impaired co-activator recruitment. J. Cell. Physiol. 224: 433,442, 2010. © 2010 Wiley-Liss, Inc. [source]


    Mitogen-activated protein kinase pathway mediates N -(4-hydroxyphenyl)retinamide-induced neuronal differentiation in the ARPE-19 human retinal pigment epithelial cell line

    JOURNAL OF NEUROCHEMISTRY, Issue 2 2008
    William Samuel
    Abstract We have shown previously that N -(4-hydroxyphenyl)retinamide (4HPR, fenretinide), a retinoic acid derivative, induces neuronal differentiation in cultured human retinal pigment epithelial (RPE) cells [Chen et al., J. Neurochem., 84 (2003), 972]. We asked the question whether the mitogen-activated protein kinase (MAPK) pathway is involved in the regulation of the 4HPR-induced neuronal differentiation of RPE (ARPE-19) cells. When we treated ARPE-19 cells with 4HPR, c-Raf and MEK1/2 kinase were activated resulting in activation of the downstream effector ERK1/2 and of SAPK/JNK. By blocking the upstream kinase MEK1/2 with specific inhibitor U0126 we abrogated the 4HPR-induced phosphorylation of ERK1/2 and SAPK/JNK, indicating that the neuronal differentiation occurs through a positive cross-talk between the ERK and the SAPK/JNK pathways. Both U0126 and the suppression of ERK1/2 expression with small interfering RNA effectively blocked the 4HPR-induced neuronal differentiation of RPE cells and the expression of calretinin. The activated ERK1/2 then induced a sequential activation of p90RSK, and increase in phosphorylation of transcription factors c- fos and c- jun leading to transcriptional activation of AP-1. Taken together, our results clearly demonstrate that c-Raf/MEK1/2 signaling cascade involving ERK1/2 plays a central role in mediating the 4HPR-induced neuronal differentiation and calretinin expression in the human ARPE-19 retinal pigment epithelial cell line. [source]


    O-linked ,-N-acetylglucosaminylation in mouse embryonic neural precursor cells

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 16 2009
    Makoto Yanagisawa
    Abstract In neural stem cells (NSCs), glycoconjugates and carbohydrate antigens are known not only to serve as excellent cell surface biomarkers for cellular differentiation and development but also to play important functional roles in determining cell fate. O-linked ,-N-acetylglucosamine (O-GlcNAc), which modifies nuclear and cytoplasmic proteins on the serine and threonine residues, is also expected to play an important regulatory role. It is not known, however, whether O-GlcNAc is expressed in NSCs or what the function of this expression is. In this study, we evaluated the patterns and possible functions of O-GlcNAcylation in mouse embryonic neuroepithelial cells (NECs), which are known to be rich in NSCs. We confirmed the expression of O-GlcNAc transferase, O-GlcNAcase, and several O-GlcNAcylated proteins in NECs. Treatment of NECs with O-GlcNAcase inhibitors, PUGNAc and streptozotocin, induced robust accumulation of O-GlcNAc in NECs and reduction of number of NECs. In O-GlcNAcase inhibitor-treated NECs, the Ras-mitogen-activated protein kinase pathway and the phosphatidylinositol 3-kinase-Akt pathway, important for proliferation and survival, respectively, were intact, but caspase-3, an executioner for cell death, was activated. These results suggest the possibility that O-GlcNAc is involved in cell death signaling in NECs. Furthermore, in NECs, we identified an O-GlcNAc-modified protein, Sp1 transcription factor. Our study is the first to evaluate expression and functions of O-GlcNAc in NECs. © 2009 Wiley-Liss, Inc. [source]


    Cyclic guanosine monophosphate signalling pathway plays a role in neural cell adhesion molecule-mediated neurite outgrowth and survival

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2007
    Dorte Kornerup Ditlevsen
    Abstract The neural cell adhesion molecule (NCAM) plays a crucial role in neuronal development, regeneration, and synaptic plasticity associated with learning and memory consolidation. Homophilic binding of NCAM leads to neurite extension and neuroprotection in various types of primary neurons through activation of a complex network of signalling cascades, including fibroblast growth factor receptor, Src-family kinases, the mitogen-activated protein kinase pathway, protein kinase C, phosphatidylinositol-3 kinase, and an increase in intracellular Ca2+. Here we present data indicating an involvement of cyclic GMP in NCAM-mediated neurite outgrowth in both hippocampal and dopaminergic neurons and in NCAM-mediated neuroprotection of dopaminergic neurons. In addition, evidence is presented suggesting that NCAM mediates activation of cGMP via synthesis of nitric oxide (NO) by NO synthase (NOS) and activation of soluble guanylyl cyclase by NO, leading to an increased synthesis of cGMP and activation by cGMP of protein kinase G. © 2007 Wiley-Liss, Inc. [source]


    Basic fibroblast growth factor induces the expression of matrix metalloproteinase-3 in human periodontal ligament cells through the MEK2 mitogen-activated protein kinase pathway

    JOURNAL OF PERIODONTAL RESEARCH, Issue 2 2003
    Atsushi Shimazu
    Basic fibroblast growth factor (bFGF, FGF-2) is one of the potent mitogens for periodontal ligament (PDL) cells. However, the role of bFGF on the matrix metalloproteinase-3 (MMP-3) expression in PDL cells is unknown. In this study, the effect of bFGF on MMP-3 expression in PDL cells and the mechanism of this process were examined. Human PDL cells were exposed to bFGF at various concentrations (0.01,10 ng/ml) in monolayer cultures. bFGF increased [3H]thymidine incorporation and suppressed proteoglycan synthesis concentration-dependently. However, similar concentration ranges of bFGF increased the release of the cell-associated proteoglycans into the medium. Furthermore, bFGF increased MMP-3 mRNA levels concentration-dependently as examined by reverse transcription-polymerase chain reaction (RT-PCR). Induction of MMP-3 after the stimulation with bFGF was observed as early as 12 h with maximal at 24 h. Thereafter, the MMP-3 mRNA level gradually decreased until 72 h. Cycloheximide blocked the induction of MMP-3 by bFGF, indicating the requirement of de novo protein synthesis for this stimulation. Furthermore, MMP-3 expression induced by bFGF was abrogated by U0126, a specific inhibitor of MEK1/2 and ERK1/2 in mitogen-activated protein (MAP) kinase pathway, not by PD98059, a specific inhibitor of MEK1. In addition, bFGF up-regulated the phosphorylated ERK1/2 in 5 min with the maximal at 20 min as examined by Western blotting, and U0126 inhibited the ERK1/2 phosphorylation induced by bFGF. These findings suggest that bFGF induces MMP-3 expression in PDL cells through the activation of the MEK2 in MAP kinase pathway. bFGF stimulation on MMP-3 synthesis may be involved in the control of the cell-associated proteoglycans in PDL cells during periodontal regeneration and degradation. [source]


    Involvement of p38 mitogen-activated protein kinase pathway in honokiol-induced apoptosis in a human hepatoma cell line (hepG2)

    LIVER INTERNATIONAL, Issue 10 2008
    Junfang Deng
    Abstract Background: Honokiol has been known to have antitumour activity. This study was conducted to evaluate the antiproliferative potential of honokiol against the hepG2 heptocellular cell line and its mechanism of action. Methods: hepG2 cells were treated with honokiol of 0,40 ,g/ml concentration. The cytotoxic effect of honokiol was determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptosis was evaluated by flow cytometry. Western blots were used to analyse the expression of various proteins (procaspase-9, procaspase-3, cleaved caspase-3, cytochrome c, Bcl-2, Bax, Bad, Bcl-XL and p38). Results: Honokiol induced apoptosis with a decreased expression of procaspase-3 and -9 and an increased expression of active caspase-3. Exposure of hepG2 cells to honokiol resulted in the downregulation of Bcl-XL and Bcl-2 expression and the release of mitochondrial cytochrome c to the cytosol. In addition, honokiol activated the p38 mitogen-activated protein kinase (MAPK) pathway, and the inhibition of this pathway by SB203580 reduced honokiol-induced apoptosis and activation of caspase-3. Conclusion: Honokiol induces apoptosis of hepG2 human hepatocellular carcinoma cells through activation of the p38 MAPK pathway, and, in turn, activation of caspase-3. [source]


    Kin1 is a plasma membrane-associated kinase that regulates the cell surface in fission yeast

    MOLECULAR MICROBIOLOGY, Issue 5 2010
    Angela Cadou
    Summary Cell morphogenesis is a complex process that depends on cytoskeleton and membrane organization, intracellular signalling and vesicular trafficking. The rod shape of the fission yeast Schizosaccharomyces pombe and the availability of powerful genetic tools make this species an excellent model to study cell morphology. Here we have investigated the function of the conserved Kin1 kinase. Kin1-GFP associates dynamically with the plasma membrane at sites of active cell surface remodelling and is present in the membrane fraction. Kin1, null cells show severe defects in cell wall structure and are unable to maintain a rod shape. To explore Kin1 primary function, we constructed an ATP analogue-sensitive allele kin1-as1. Kin1 inhibition primarily promotes delocalization of plasma membrane-associated markers of actively growing cell surface regions. Kin1 itself is depolarized and its mobility is strongly reduced. Subsequently, amorphous cell wall material accumulates at the cell surface, a phenotype that is dependent on vesicular trafficking, and the cell wall integrity mitogen-activated protein kinase pathway is activated. Deletion of cell wall integrity mitogen-activated protein kinase components reduces kin1, hypersensitivity to stresses such as those induced by Calcofluor white and SDS. We propose that Kin1 is required for a tight link between the plasma membrane and the cell wall. [source]


    Aldosterone induces collagen synthesis via activation of extracellular signal-regulated kinase 1 and 2 in renal proximal tubules

    NEPHROLOGY, Issue 8 2008
    GUOSHUANG XU
    SUMMARY: Aim: Aldosterone plays a crucial role in renal fibrosis by inducing mesangial cell proliferation and promoting collagen synthesis in renal fibroblasts. However, renal proximal tubule involvement in aldosterone-induced collagen synthesis has not yet been identified. The aim of this study was to examine the potential role of aldosterone in collagen expression and its possible mineralocorticoid receptor (MR)-dependent pathway, mediated by activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) in cultured human renal proximal tubular epithelial (HKC) cells. Methods: After HKC cells were stimulated by aldosterone with different concentrations for various time and periods, the gene expression and protein synthesis of collagen I, II, III and IV were measured by real-time polymerase chain reaction and western blot, respectively. ERK1/2 activation, ,-smooth muscle actin (,-SMA), and E-cadherin were also detected by western blot. Results: Aldosterone can increase ERK1/2 phosphorylation of human renal proximal tubular epithelial cells in a time- and dose-dependent manner. Although aldosterone had no effect on collagen I and II expression, it increased expression of ,-SMA and collagen III and IV and decreased that of E-cadherin in HKC cells after 48 h. These effects could be prevented by a ERK pathway inhibitor, U0126, or by a selective MR antagonist, spironolactone. Conclusion: The results suggest that aldosterone plays a pivotal role in tubulointerstitial fibrosis by promoting tubular epithelial,mesenchymal transition and collagen synthesis in proximal tubular cells. The process is MR-dependent, and mediated by ERK1/2 mitogen-activated protein kinase pathway. [source]


    Aspects of achondroplasia in the skulls of dwarf transgenic mice: A cephalometric study

    THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 3 2006
    Melissa Wadler Bloom
    Abstract Achondroplasia, the most common short-limbed dwarfism in humans, results from a single nucleotide substitution in the gene for fibroblast growth factor receptor 3 (FGFR3). FGFR3 regulates bone growth in part via the mitogen-activated protein kinase pathway (MAPK). To examine the role of this pathway in chondrocyte differentiation, a transgenic mouse was generated that expresses a constitutively active mutant of MEK1 in chondrocytes and exhibits dwarfing characteristics typical of human achondroplasia, i.e., shortened axial and appendicular skeletons, mid-facial hypoplasia, and dome-shaped cranium. In this study, cephalometrics of the MEK1 mutant skulls were assessed to determine if the MEK1 mice are a good model of achondroplasia. Skull length, arc of the cranial vault, and area, maximum and minimum diameters of the brain case were measured on digitized radiographs of skulls of MEK1 and control mice. Cranial base and nasal bone length and foramen magnum diameter were measured on midsagittal micro-CT sections. Data were normalized by dividing by the cube root of each animal's weight. Transgenic mice exhibited a domed skull, deficient midface, and (relatively) prognathic mandible and had a shorter cranial base and nasal bone than the wild-type. Skull length was significantly less in transgenic mice, but cranial arc was significantly greater. The brain case was larger and more circular and minimum diameter of the brain case was significantly greater in transgenic mice. The foramen magnum was displaced anteriorly but not narrowed. MEK1 mouse cephalometrics confirm these mice as a model for achondroplasia, demonstrating that the MAP kinase signaling pathway is involved in FGF signaling in skeletal development. © 2006 Wiley-Liss, Inc. [source]


    Function of a mitogen-activated protein kinase pathway in N gene-mediated resistance in tobacco

    THE PLANT JOURNAL, Issue 4 2003
    Hailing Jin
    Summary The active defense of plants against pathogens often includes rapid and localized cell death known as hypersensitive response (HR). Protein phosphorylation and dephosphorylation are implicated in this event based on studies using protein kinase and phosphatase inhibitors. Recent transient gain-of-function studies demonstrated that the activation of salicylic acid-induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK), two tobacco mitogen-activated protein kinases (MAPKs) by their upstream MAPK kinase (MAPKK), NtMEK2 leads to HR-like cell death. Here, we report that the conserved kinase interaction motif (KIM) in MAPKKs is required for NtMEK2 function. Mutation of the conserved basic amino acids in this motif, or the deletion of N-terminal 64 amino acids containing this motif significantly compromised or abolished the ability of NtMEK2DD to activate SIPK/WIPK in vivo. These mutants were also defective in interacting with SIPK and WIPK, suggesting protein,protein interaction is required for the functional integrity of this MAPK cascade. To eliminate Agrobacterium that is known to activate a number of defense responses in transient transformation experiments, we generated permanent transgenic plants. Induction of NtMEK2DD expression by dexamethasone induced HR-like cell death in both T1 and T2 plants. In addition, by using PVX-induced gene silencing, we demonstrated that the suppression of all three known components in the NtMEK2,SIPK/WIPK pathway attenuated N gene-mediated TMV resistance. Together with previous report that SIPK and WIPK are activated by TMV in a gene-for-gene-dependent manner, we conclude that NtMEK2,SIPK/WIPK pathway plays a positive role in N gene-mediated resistance, possibly through regulating HR cell death. [source]


    Rapid activation of Mac-1(CD11b/CD18) molecules on macrophages by a new chemotactic factor ,Gasserokine' produced by Lactobacillus gasseri JCM1131T

    ANIMAL SCIENCE JOURNAL, Issue 5 2002
    Haruki KITAZAWA
    ABSTRACT The chemoattractant activity of a new chemotactic factor, ,Gasserokine' produced by Lactobacillus gasseri JCM1131T, has been proposed as a novel immunological function of probiotic lactic acid bacteria. The focus of the present study was to understand the mechanism of the chemotaxis induced by Gasserokine, using activation of an adhesion molecule, Mac-1 (CD11b/CD18) on macrophages. The macrophage chemotaxis to Gasserokine was abolished by preincubation of macrophages with the anti-Mac-1 mAb. Gasserokine induced rapid serine phosphorylation of CD18 molecules within 1 min of stimulation, but the effect was short-lived. Substantial tyrosine phosphorylation was observed in CD18-associated protein of macrophages stimulated by Gasserokine. The tyrosine phosphorylation was confirmed in macrophages stimulated with Gasserokine and also serine/threonine phosphorylation was detected on CD18 molecules by laser microscopy using a double immunostaining method. These results suggest that selective activation of intracellular signaling cascades, such as the mitogen-activated protein kinase pathway, are related to the macrophage chemotaxis induced by Gasserokine. [source]


    Pathway sensitivity analysis for detecting pro-proliferation activities of oncogenes and tumor suppressors of epidermal growth factor receptor-extracellular signal-regulated protein kinase pathway at altered protein levels

    CANCER, Issue 18 2009
    Hu Li PhD
    Abstract BACKGROUND: Mathematic models and sensitivity analyses of biologic pathways have been used for exploring the dynamics and for detecting the key components of signaling pathways. METHODS: The authors previously developed a mathematic model of the epidermal growth factor receptor-extracellular signal-regulated protein kinase (EGFR-ERK) pathway using ordinary differential equations from existing EGFR-ERK pathway models. By using prolonged ERK activation as an indicator that may lead to cell proliferation under certain circumstances, in the current study, a pathway sensitivity analysis was performed to test its capability of detecting pro-proliferative activities through altered protein levels to examine the effects on ERK activation. RESULTS: The analysis revealed that 12 of 20 oncoproteins and 4 of 5 tumor suppressors were detected, consistent with reported experimental works. Because pathway dynamics depend on many factors, some of which were not included in the current models, failure to detect all known oncogenes and tumor suppressors can be because of the failure to include relevant crosstalk to other pathway components. CONCLUSIONS: Overall, the current results indicated that pathway sensitivity analysis is a useful approach for detecting and distinguishing pro-proliferation activities of oncoproteins and suppressed proliferative activities of tumor suppressors at altered protein levels at least in the EGFR-ERK model. Cancer 2009. © 2009 American Cancer Society. [source]


    Simplified yet highly accurate enzyme kinetics for cases of low substrate concentrations

    FEBS JOURNAL, Issue 19 2009
    Hanna M. Härdin
    Much of enzyme kinetics builds on simplifications enabled by the quasi-steady-state approximation and is highly useful when the concentration of the enzyme is much lower than that of its substrate. However, in vivo, this condition is often violated. In the present study, we show that, under conditions of realistic yet high enzyme concentrations, the quasi-steady-state approximation may readily be off by more than a factor of four when predicting concentrations. We then present a novel extension of the quasi-steady-state approximation based on the zero-derivative principle, which requires considerably less theoretical work than did previous such extensions. We show that the first-order zero-derivative principle, already describes much more accurately the true enzyme dynamics at enzyme concentrations close to the concentration of their substrates. This should be particularly relevant for enzyme kinetics where the substrate is an enzyme, such as in phosphorelay and mitogen-activated protein kinase pathways. We illustrate this for the important example of the phosphotransferase system involved in glucose uptake, metabolism and signaling. We find that this system, with a potential complexity of nine dimensions, can be understood accurately using the first-order zero-derivative principle in terms of the behavior of a single variable with all other concentrations constrained to follow that behavior. [source]


    Dynamics of cell wall structure in Saccharomyces cerevisiae

    FEMS MICROBIOLOGY REVIEWS, Issue 3 2002
    Frans M Klis
    Abstract The cell wall of Saccharomyces cerevisiae is an elastic structure that provides osmotic and physical protection and determines the shape of the cell. The inner layer of the wall is largely responsible for the mechanical strength of the wall and also provides the attachment sites for the proteins that form the outer layer of the wall. Here we find among others the sexual agglutinins and the flocculins. The outer protein layer also limits the permeability of the cell wall, thus shielding the plasma membrane from attack by foreign enzymes and membrane-perturbing compounds. The main features of the molecular organization of the yeast cell wall are now known. Importantly, the molecular composition and organization of the cell wall may vary considerably. For example, the incorporation of many cell wall proteins is temporally and spatially controlled and depends strongly on environmental conditions. Similarly, the formation of specific cell wall protein,polysaccharide complexes is strongly affected by external conditions. This points to a tight regulation of cell wall construction. Indeed, all five mitogen-activated protein kinase pathways in bakers' yeast affect the cell wall, and additional cell wall-related signaling routes have been identified. Finally, some potential targets for new antifungal compounds related to cell wall construction are discussed. [source]


    Amino-terminus domain of the androgen receptor as a molecular target to prevent the hormonal progression of prostate cancer

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2006
    Gang Wang
    Abstract Prostate cancer has a propensity to metastasize to the bone. Currently the only effective systemic treatment for these patients is androgen ablation therapy. However, the tumor will invariably progress to an androgen-independent stage and the patient will succumb to his disease within approximately 2 years. The earliest indication of hormonal progression is the rising titer of serum prostate specific antigen. Current evidence implicates the androgen receptor (AR) as a key factor in maintaining the growth of prostate cancer cells in an androgen-depleted state. Under normal conditions, binding of ligand activates the receptor, allowing it to effectively bind to its respective DNA element. However, AR is also transformed in the absence of androgen (ligand-independent activation) in prostate cells via multiple protein kinase pathways and the interleukin-6 (IL-6) pathway that converge upon the N-terminal domain of the AR. This domain is the main region for phosphorylation and is also critical for normal coregulator recruitment. Here we discuss evidence supporting the role of the AR, IL-6 and other protein kinase pathways in the hormonal progression of prostate cancer to androgen independence and the mechanisms involved in activation of the AR by these pathways. Receptor-targeted therapy, especially potential drugs targeting the N-terminal domain, may effectively prevent or delay the hormonal progression of AR-dependent prostate cancer. J. Cell. Biochem. 98: 36,53, 2006. © 2006 Wiley-Liss, Inc. [source]


    Immune-expression of HSP27 and IL-10 in recurrent aphthous ulceration

    JOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 8 2008
    Nelson T. Miyamoto Jr
    Background:, Recently, abnormal cellular immune response has been considered responsible for the oral lesion in the recurrent aphthous ulceration (RAU). For reasons not yet defined, antigens of the oral microbiota would trigger abnormal Th1 immune response against epithelial cells. On the other hand, studies have demonstrated that heat shock proteins (HSP) can block the production of proinflammatory cytokine through inhibition of NF-,B and mitogen-activated protein kinase pathways or activate anti-inflammatory cytokines and therefore control the magnitude of the immune response. HSP27 has been considered a powerful inductor of IL-10, a major inhibitor of Th1 response. Methods:, Using immunohistochemistry, we studied the expression and location of HSP27 and IL-10 in ulcerated lesions clinically diagnosed as RAU (n = 27) and to compare it with that of oral clinically normal mucosa (CT; n = 6) and of other inflammatory chronic diseases such as oral fibrous inflammatory hyperplasia (FIH; n = 18), Crohn's disease (CD; n = 10) and ulcerative colitis (UC; n = 9). Results:, A lower proportion of HSP27-positive epithelial cells in RAU and CD were observed when compared with CT and FIH (P < 0.001**; P = 0.013**). A lower proportion of IL-10-positive interstitial cells in RAU was observed when compared with FIH, UC, CT and CD (P < 0.001**; P < 0.001**; P < 0.001**; P = 0.034*). Conclusion:, Altogether the data suggest that a reduced cellular expression of HSP27 and IL-10 in RAU might be related with the aetiopathogenesis of the ulcerated oral lesions. [source]


    Phosphatidylethanol Mediates its Effects on the Vascular Endothelial Growth Factor via HDL Receptor in Endothelial Cells

    ALCOHOLISM, Issue 2 2009
    Marja Katriina Liisanantti
    Background:, Previous epidemiological studies have shown that light to moderate alcohol consumption has protective effects against coronary heart disease but the mechanisms of the beneficial effect of alcohol are not known. Ethanol may increase high density lipoprotein (HDL) cholesterol concentration, augment the reverse cholesterol transport, or regulate growth factors or adhesion molecules. To study whether qualitative changes in HDL phospholipids mediate part of the beneficial effects of alcohol on atherosclerosis by HDL receptor, we investigated whether phosphatidylethanol (PEth) in HDL particles affects the secretion of vascular endothelial growth factor (VEGF) by a human scavenger receptor CD36 and LIMPII analog-I (CLA-1)-mediated pathway. Methods:, Human EA.hy 926 endothelial cells were incubated in the presence of native HDL or PEth-HDL. VEGF concentration and CLA-1 protein expression were measured. Human CLA-1 receptor-mediated mechanisms in endothelial cells were studied using CLA-1 blocking antibody and protein kinase inhibitors. Results:, Phosphatidylethanol-containing HDL particles caused a 6-fold increase in the expression of CLA-1 in endothelial cells compared with the effect of native HDL. That emergent effect was mediated mainly through protein kinase C and p44/42 mitogen-activated protein kinase pathways. PEth increased the secretion of VEGF and that increase could be abolished by a CLA-1 blocking antibody. Conclusions:, High density lipoprotein particles containing PEth bind to CLA-1 receptor and thereby increase the secretion of VEGF from endothelial cells. Ethanol-induced protective effects against coronary heart disease may be explained, at least partly, by the effects of PEth-modified HDL particles on VEGF via CLA-1-mediated mechanisms in endothelial cells. [source]


    Insights into Serotonin Signaling Mechanisms Associated with Canine Degenerative Mitral Valve Disease

    JOURNAL OF VETERINARY INTERNAL MEDICINE, Issue 1 2010
    M.A. Oyama
    Little is known about the molecular abnormalities associated with canine degenerative mitral valve disease (DMVD). The pathology of DMVD involves the differentiation and activation of the normally quiescent mitral valvular interstitial cell (VIC) into a more active myofibroblast phenotype, which mediates many of the histological and molecular changes in affected the valve tissue. In both humans and experimental animal models, increased serotonin (5-hydroxytryptamine, 5HT) signaling can induce VIC differentiation and myxomatous valve damage. In canine DMVD, numerous lines of evidence suggest that 5HT and related molecules such as transforming growth factor-, play a critical role in the pathogenesis of this disease. A variety of investigative techniques, including gene expression, immunohistochemistry, protein blotting, and cell culture, shed light on the potential role of 5HT in the differentiation of VIC, elaboration of myxomatous extracellular matrix components, and activation of mitogen-activated protein kinase pathways. These studies help support a hypothesis that 5HT and its related pathways serve as an important stimulus in canine DMVD. This review describes the pathological characteristics of canine DMVD, the organization and role of the 5HT pathway in valve tissue, involvement of 5HT in human and experimental models of valve disease, avenues of evidence that suggest a role for 5HT in naturally occurring DMVD, and finally, a overarching hypothesis describing a potential role for 5HT in canine DMVD. [source]


    Pathogenic T cells in murine lupus exhibit spontaneous signaling activity through phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways

    ARTHRITIS & RHEUMATISM, Issue 4 2003
    Florin Niculescu
    Objective To determine the activation status of two cytoplasmic signaling pathways, phosphatidylinositol 3-kinase (PI 3-kinase) and the mitogen-activated protein kinase (MAPK) family. Methods We studied the pathogenic CD4+ T cells that drive disease in the parent-into-F1 mouse model of lupus-like chronic graft-versus-host disease (GVHD). We determined immunoprecipitated kinase activity for PI 3-kinase and MAPK members (Raf-1, extracellular signal,regulated kinase 1 [ERK-1], c-Jun N-terminal kinase 1 [JNK-1], and p38 MAPK) from either unfractionated splenocytes or purified donor CD4+ T cells. Uninjected normal mice served as negative controls, and acute GVHD mice served as positive controls. Results Compared with negative controls, unfractionated splenocyte kinase activity from chronic GVHD mice was significantly increased for PI 3-kinase and JNK-1, but not for Raf-1, p38 MAPK, or ERK-1. Increased PI 3-kinase and JNK-1 activity was also seen in acute GVHD splenocytes, as was increased Raf-1 and p38 MAPK activity. The pattern of increased PI 3-kinase and JNK-1 activity seen in unfractionated chronic GVHD splenocytes was also seen in isolated donor, but not host, CD4+ T cells from chronic GVHD mice, indicating that donor CD4+ T cell signaling activity accounted for at least a portion of the activity observed in unfractionated splenocytes. Increased ERK-1 activity was not seen in either donor or host CD4+ T cells. This pattern of cytoplasmic signaling pathway in donor CD4+ T cells was associated with increased T cell receptor membrane signaling activation (Lck and Fyn phosphorylation) and increased transcription activation (phosphorylation of inhibitor of nuclear factor ,B), confirming the biologic significance of these observations. Conclusion The pathogenic T cells driving disease in this murine model exhibit activation in the form of spontaneous cytoplasmic signaling pathway activity that can be detected without in vitro restimulation and involves a T cell,specific (PI 3-kinase) and a nonspecific stress/cytokine pathway (JNK-1). These results raise the possibility that a full characterization of the signaling pathways active in pathogenic lupus T cells might lead to new therapeutic targets. [source]


    Vitamin D and systemic cancer: is this relevant to malignant melanoma?

    BRITISH JOURNAL OF DERMATOLOGY, Issue 2 2002
    J.E. Osborne
    Summary 1,25-dihydroxyvitamin D3[1,25(OH)2D3] is a well-known potent regulator of cell growth and differentiation and there is recent evidence of an effect on cell death, tumour invasion and angiogenesis, which makes it a candidate agent for cancer regulation. The classical synthetic pathway of 1,25(OH)2D3 involves 25- and 1,-hydroxylation of vitamin D3, in the liver and kidney, respectively, of absorbed or skin-synthesized vitamin D3. There is recent focus on the importance in growth control of local metabolism of 1,25(OH)2D3, which is a function of local tissue synthetic hydroxylases and particularly the principal catabolizing enzyme, 24-hydroxylase. The classical signalling pathway of 1,25(OH)2D3 employs the vitamin D nuclear receptor (VDR), which is a transcription factor for 1,25(OH)2D3 target genes. Effects of this pathway include inhibition of cellular growth and invasion. Cytoplasmic signalling pathways are increasingly being recognized, which similarly may regulate growth and differentiation but also apoptosis. 1,25(OH)2D3 has a major inhibitory effect on the G1/S checkpoint of the cell cycle by upregulating the cyclin dependent kinase inhibitors p27 and p21, and by inhibiting cyclin D1. Indirect mechanisms include upregulation of transforming growth factor-, and downregulation of the epidermal growth factor receptor. 1,25(OH)2D3 may induce apoptosis either indirectly through effects on the insulin-like growth receptor and tumour necrosis factor-, or more directly via the Bcl-2 family system, the ceramide pathway, the death receptors (e.g. Fas) and the stress-activated protein kinase pathways (Jun N terminal kinase and p38). Inhibition of tumour invasion and metastasis potential has been demonstrated and mechanisms include inhibition of serine proteinases, metalloproteinases and angiogenesis. The lines of evidence for an effect of vitamin D3 in systemic cancer are the laboratory demonstration of relevant effects on cellular growth, differentiation, apoptosis, malignant cell invasion and metastasis; epidemiological findings of an association of the occurrence and outcome of cancers with derangements of vitamin D3/1,25(OH)2D3 and the association of functional polymorphisms of the VDR with the occurrence of certain cancers. In addition, vitamin D3 analogues are being developed as cancer chemotherapy agents. There is accumulating evidence that the vitamin D3/1,25(OH)2D3/VDR axis is similarly important in malignant melanoma (MM). MM cells express the VDR, and the antiproliferative and prodifferentiation effects of 1,25(OH)2D3 have been shown in cultured melanocytes, MM cells and MM xenografts. Recently, an inhibitory effect on the spread of MM cells has been demonstrated, low serum levels of 1,25(OH)2D3 have been reported in MM patients and the VDR polymorphisms have been shown to be associated with both the occurrence and outcome of MM. The relationship between solar irradiation and MM is more complex than for the systemic cancers. As in other cancers, there is evidence of a protective effect of vitamin D3 in MM, but ultraviolet radiation, which is a principal source of vitamin D3, is mutagenic. Further work is necessary on the influence of serum vitamin D3 levels on the occurrence and prognosis of MM, the effects of sun protection measures on serum vitamin D3 levels in temperate climates and epidemiological studies on geographical factors and skin type on the prognosis of MM. Meanwhile, it would seem mandatory to ensure an adequate vitamin D3 status if sun exposure were seriously curtailed, certainly in relation to carcinoma of breast, prostate and colon and probably also MM. [source]


    Activation of sphingosine kinase mediates suppressive effect of interleukin-6 on human multiple myeloma cell apoptosis

    BRITISH JOURNAL OF HAEMATOLOGY, Issue 5 2007
    Qing-Fang Li
    Summary Interleukin 6 (IL-6) influences the growth and survival of multiple myeloma (MM) cells via the activation of multiple signalling cascades. Although sphingosine kinase (SPHK) signalling is known to play important roles in the regulation of cell proliferation and apoptosis, the role of SPHK activation in IL-6 signalling and in the pathology of MM remains unclear. This study found that IL-6 activated SPHK in MM cells, which mediates the suppressive effects of IL-6 on MM cell apoptosis. Both MM cell lines and primary MM cells constitutively expressed SPHK, and treatment of MM cells with IL-6 resulted in activation of SPHK in a concentration-dependent manner. Specific inhibitors of the phosphatidylinositol-3 kinase and extracellular signal-regulated kinase/mitogen-activated protein kinase pathways blocked the IL-6-induced activation of SPHK. It was further demonstrated that IL-6-induced activation of SPHK inhibited dexamethasone-induced apoptosis of MM cells. IL-6 stimulation or retroviral-mediated overexpression of SPHK1 in MM cells resulted in increased intracellular SPHK activity and upregulation of myeloid cell leukaemia-1 (Mcl-1), leading to increased cell proliferation and survival. Conversely, inhibition of SPHK1 by small interfering RNA reduced IL-6-induced upregulation of Mcl-1 and blocked the suppressive effect of IL-6 on MM cell apoptosis. Taken together, these results delineate a key role for SPHK activation in IL-6-induced proliferation and survival of MM cells, and suggest that SPHK may be a potential new therapeutic target in MM. [source]


    Interleukin-1, attenuates endothelin B receptor-mediated airway contractions in a murine in vitro model of asthma: roles of endothelin converting enzyme and mitogen-activated protein kinase pathways

    CLINICAL & EXPERIMENTAL ALLERGY, Issue 9 2004
    Y. Zhang
    Summary Background Asthma is a chronic airway disease, known to involve several inflammatory mediators. Little is known about how these mediators interact in order to produce or attenuate even basic features of the disease, like airway hyper-reactivity and remodelling. Endothelin-1 (ET-1) and IL-1, are two mediators suggested to play important roles in the induction of airway inflammation. Objective To investigate the interactions between ET-1 and IL-1,, using a novel in vitro model of asthma, focusing on airway smooth muscle contractility. Methods Isolated murine tracheal segments were cultured from 1 to 8 days in the absence and presence of IL-1,. The subsequent contractile responses to sarafotoxin 6c (S6c) (selective agonist for ETB receptor) and sarafotoxin 6b (S6b) (ETA and ETB receptor agonist) were recorded by a myographs system. In all experiments, ETB receptors were desensitized before the contractile response to S6b was recorded. Thus, the response to S6b is only mediated by ETA receptors in the present study. The mRNA expressions for ET-1 and endothelin (ET) receptors were quantified by real-time PCR. Results Organ culture in the presence of IL-1, attenuated the maximal contraction induced by S6c, but not S6b. This reduction was concentration-dependent and was significant after 2, 4 and 8 days of culture. To investigate the mechanisms behind this, inhibitors for endothelin converting enzyme (ECE) phosphoramidon, c-JUN N-terminal kinase (JNK) SP600125, extracellular-signal-regulated kinase 1/2(ERK 1/2) PD98059 and p38 pathway SB203580 were used. Individually, SP600125 and PD98059, but not SB203580, could partly reverse the reduction induced by IL-1,. An additional effect was obtained when SP600125 and PD98059 were combined. The mRNA expressions for ET-1 and ETB receptor were up- and down-regulated, respectively, by IL-1,. Conclusion Presence of IL-1, in the airways attenuate the contractile response mediated via ETB receptors, an effect dependent on ECE, JNK and ERK 1/2 pathways. [source]


    Interleukin-4 increases murine airway response to kinins, via up-regulation of bradykinin B1 -receptors and altered signalling along mitogen-activated protein kinase pathways

    CLINICAL & EXPERIMENTAL ALLERGY, Issue 8 2004
    M. Bryborn
    Summary Background IL-4 is believed to play a role in asthma and chronic obstructive pulmonary disease through promotion of eosinophilic inflammation and mucus hypersecretion. Whether IL-4 can induce a direct effect on airway smooth muscle remains unknown. Objective To investigate the effect of IL-4 on airway smooth muscle, focusing on the contractile response to des-Arg9 -bradykinin and bradykinin. Methods Tracheal segments from murine airways were cultured for 1,8 days in the absence and presence of IL-4. The smooth muscle response induced by des-Arg9 -bradykinin and bradykinin was investigated in myographs. Expression levels for the IL-4-, bradykinin B1 - and B2 -receptors were characterized using RT-PCR. Specific inhibitors were used to study signal changes along the IL-4 receptor- (IL-4R-) coupled mitogen-activated protein (MAP) kinase (MAPK) pathways. Results IL-4 treatment increased the contractile response to des-Arg9 -bradykinin and bradykinin in a concentration- and time-dependent manner. Dexamethasone and the transcriptional inhibitor actinomycin D blocked this effect. c-Jun N-terminal kinase inhibitor SP600125 also blocked the effect of both des-Arg9 -bradykinin and bradykinin, whereas p38 inhibitor SB203580 blocked only the former and the MAPKK inhibitor PD098059, only the latter agonist responses. IL-4 treatment increased the mRNA levels representing bradykinin B1 - but not B2 -receptors. Levels of IL-4R were not altered during culture. Conclusion Long-term exposure to IL-4 increases the contractile response induced by des-Arg9 -bradykinin and bradykinin in cultured murine airways. This effect appears to be mediated via an up-regulation of B1 -receptors and altered signalling along the MAPK pathways. [source]