Protein Databases (protein + databases)

Distribution by Scientific Domains


Selected Abstracts


The optimization of protein secondary structure determination with infrared and circular dichroism spectra

FEBS JOURNAL, Issue 14 2004
Keith A. Oberg
We have used the circular dichroism and infrared spectra of a specially designed 50 protein database [Oberg, K.A., Ruysschaert, J.M. & Goormaghtigh, E. (2003) Protein Sci. 12, 2015,2031] in order to optimize the accuracy of spectroscopic protein secondary structure determination using multivariate statistical analysis methods. The results demonstrate that when the proteins are carefully selected for the diversity in their structure, no smaller subset of the database contains the necessary information to describe the entire set. One conclusion of the paper is therefore that large protein databases, observing stringent selection criteria, are necessary for the prediction of unknown proteins. A second important conclusion is that only the comparison of analyses run on circular dichroism and infrared spectra independently is able to identify failed solutions in the absence of known structure. Interestingly, it was also found in the course of this study that the amide II band has high information content and could be used alone for secondary structure prediction in place of amide I. [source]


Expression and immunocytochemical analysis of Autographa californica nucleopolyhedrovirus (AcMNPV) orf74 gene

INSECT SCIENCE, Issue 5 2006
SHI-HENG AN
Abstract Autographa californica nucleopolyhedrovirus orf74 (Ac74) is located between 62 311 and 63 108bp in the AcMNPV genome, which encodes 265 amino acid residues with a predicted 31 kDa molecular weight. The homologues of Ac74 were searched using BLASTP in protein databases, GenBank/EMBL and SWISS-PROT. The result revealed that deduced Ac74 protein was homologous to the predicted products from 10 lepidoptera NPV ORFs. The multiple sequence alignments of Ac74 and its 10 homologues manifested only one amino acid residue was completely conserved. The transcript analysis revealed that the transcript of Ac74 was detected from 24,72 hours post-infection (hpi). The product of Ac74 was detected at 24 hpi and lasted until 72 hpi by Western blot using anti-Ac74 antiserum, consistent with reverse transcriptase polymerase chain reaction results. These results suggested Ac74 was expressed during the later stages of infection. The product of Ac74 was 31 kDa in size, consistent with predicted molecular weight. The subcellular localization of Ac74 proteins manifested Ac74 protein in the cytoplasm, and was hardly present in the nucleus at 24 hpi. The fluorescence was also observed in polyhedra, except cytoplasm at 72 hpi. Together, Ac74 is a functional protein with 3 1kDa molecular weight and is located in the cytoplasm and the polyhedra. [source]


Protein identification via ion-trap collision-induced dissociation and examination of low-mass product ions

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 1 2008
Jeremiah J. Bowers
Abstract A whole-protein tandem mass spectrometry approach for protein identification based on precursor ion charge state concentration via ion/ion reactions, ion-trap collisional activation, ion/ion proton-transfer reactions involving the product ions, and mass analysis over a narrow m/z range (up to m/z 2000) is described and evaluated. The experiments were carried out with a commercially available electrospray ion-trap instrument that has been modified to allow for ion/ion reactions. Reaction conditions and the approach to searching protein databases were developed with the assumption that the resolving power of the mass analyzer is insufficient to distinguish charge states on the basis of the isotope spacings. Ions derived from several charge states of cytochrome c, myoglobin, ribonuclease A, and ubiquitin were used to evaluate the approach for protein identification and to develop a two-step procedure to database searching to optimize specificity. The approach developed with the model proteins was then applied to whole cell lysate fractions of Saccharomyces cerevisiae. The results are illustrated with examples of assignments made for three a priori unknown proteins, each selected randomly from a lysate fraction. Two of the three proteins were assigned to species present in the database, whereas one did not match well any database entry. The combination of the mass measurement and the product ion masses suggested the possibility for the oxidation of two methionine residues of a protein in the database. The examples show that this limited whole-protein characterization approach can provide insights that might otherwise be lacking with approaches based on complete enzymatic digestion. Copyright © 2007 John Wiley & Sons, Ltd. [source]


On peptide de novo sequencing: a new approach,

JOURNAL OF PEPTIDE SCIENCE, Issue 4 2005
Dr Renato Bruni
Abstract A procedure is presented for the automatic determination of the amino acid sequence of peptides by processing data obtained from mass spectrometry analysis. This is a basic and relevant problem in the field of proteomics. Furthermore, it has an even higher conceptual and applicative interest in peptide research, as well as in other connected fields. The analysis does not rely on known protein databases, but on the computation of all amino acid sequences compatible with the given spectral data. By formulating a mathematical model for such combinatorial problems, the structural limitations of known methods are overcome, and efficient solution algorithms can be developed. The results are very encouraging both from the accuracy and computational points of view. Copyright © 2004 European Peptide Society and John Wiley & Sons, Ltd. [source]


The ankyrin repeat as molecular architecture for protein recognition

PROTEIN SCIENCE, Issue 6 2004
Leila K. Mosavi
Abstract The ankyrin repeat is one of the most frequently observed amino acid motifs in protein databases. This protein,protein interaction module is involved in a diverse set of cellular functions, and consequently, defects in ankyrin repeat proteins have been found in a number of human diseases. Recent biophysical, crystallographic, and NMR studies have been used to measure the stability and define the various topological features of this motif in an effort to understand the structural basis of ankyrin repeat-mediated protein,protein interactions. Characterization of the folding and assembly pathways suggests that ankyrin repeat domains generally undergo a two-state folding transition despite their modular structure. Also, the large number of available sequences has allowed the ankyrin repeat to be used as a template for consensus-based protein design. Such projects have been successful in revealing positions responsible for structure and function in the ankyrin repeat as well as creating a potential universal scaffold for molecular recognition. [source]


Identification of four proteins from the small subunit of the mammalian mitochondrial ribosome using a proteomics approach

PROTEIN SCIENCE, Issue 3 2001
Emine Cavdar Koc
Abstract Proteins in the small subunit of the mammalian mitochondrial ribosome were separated by two-dimensional polyacrylamide gel electrophoresis. Four individual proteins were subjected to in-gel Endoprotease Lys-C digestion. The sequences of selected proteolytic peptides were obtained by electrospray tandem mass spectrometry. Peptide sequences obtained from in-gel digestion of individual spots were used to screen human, mouse, and rat expressed sequence tag databases, and complete consensus cDNAs for these species were deduced in silico. The corresponding protein sequences were characterized by comparison to known ribosomal proteins in protein databases. Four different classes of mammalian mitochondrial small subunit ribosomal proteins were identified. Only two of these proteins have significant sequence similarities to ribosomal proteins from prokaryotes. These proteins are homologs to Escherichia coli S9 and S5 proteins. The presence of these newly identified mitochondrial ribosomal proteins are also investigated in the Drosophila melanogaster, Caenorhabditis elegans, and in the genomes of several fungi. [source]


Identification of shed proteins from chinese hamster ovary cells: Application of statistical confidence using human and mouse protein databases

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 7 2005
Mamoun Ahram
Abstract The shedding process releases ligands, receptors, and other proteins from the surface of the cell and is a mechanism whereby cells communicate. Even though altered regulation of this process has been implicated in several diseases, global approaches to evaluate shed proteins have not been developed. A goal of this study was to identify global changes in shed proteins in media taken from cells exposed to low-doses of radiation to develop a fundamental understanding of the bystander response. Chinese hamster ovary cells were chosen because they have been widely used for radiation studies and are reported to respond to radiation by releasing factors into the media that cause genomic instability and cytotoxicity in unexposed cells, i.e., a bystander effect. Media samples taken for irradiated cells were evaluated using a combination of tandem- and Fourier transform-ion cyclotron resonance (FT-ICR)-mass spectrometry (MS) analyses. Since the hamster genome has not been sequenced, MS data was searched against the mouse and human protein databases. Nearly 150 proteins identified by tandem mass spectrometry were confirmed by FT-ICR. When both types of MS data were evaluated, using a new confidence scoring tool based on discriminant analyses, about 500 proteins were identified. Approximately 20% of these identifications were either integral membrane proteins or membrane associated proteins, suggesting that they were derived from the cell surface and, hence were likely shed. However, estimates of quantitative changes, based on two independent MS approaches, did not identify any protein abundance changes attributable to the bystander effect. Results from this study demonstrate the feasibility of global evaluation of shed proteins using MS in conjunction with cross-species protein databases and that significant improvement in peptide/protein identifications is provided by the confidence scoring tool. [source]


Structure of a putative ,-phosphoglucomutase (TM1254) from Thermotoga maritima

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 12 2009
Richard W. Strange
The structure of TM1254, a putative ,-phosphoglucomutase from T. maritima, was determined to 1.74,Å resolution in a high-throughput structural genomics programme. Diffraction data were obtained from crystals belonging to space group P22121, with unit-cell parameters a = 48.16, b = 66.70, c = 83.80,Å, and were refined to an R factor of 19.2%. The asymmetric unit contained one protein molecule which is comprised of two domains. Structural homologues were found from protein databases that confirmed a strong resemblance between TM1254 and members of the haloacid dehalogenase (HAD) hydrolase family. [source]