Home About us Contact | |||
Protein Carbonyls (protein + carbonyl)
Terms modified by Protein Carbonyls Selected AbstractsEffect of dietary ,-tocopherol + ascorbic acid, selenium, and iron on oxidative stress in sub-yearling Chinook salmon (Oncorhynchus tshawytscha Walbaum)JOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 1 2009T. L. Welker Summary A three-variable central composite design coupled with surface-response analysis was used to examine the effects of dietary ,-tocopherol + ascorbic acid (TOCAA), selenium (Se), and iron (Fe) on indices of oxidative stress in juvenile spring Chinook salmon. Each dietary factor was tested at five levels for a total of fifteen dietary combinations (diets). Oxidative damage in liver and kidney (lipid peroxidation, protein carbonyls) and erythrocytes (erythrocyte resistance to peroxidative lysis, ERPL) was determined after feeding experimental diets for 16 (early December) and 28 (early March) weeks. Only TOCAA influenced oxidative stress in this study, with most measures of oxidative damage decreasing (liver lipid peroxidation in December and March; ERPL in December; liver protein carbonyl in March) with increasing levels of TOCAA. We also observed a TOCAA-stimulated increase in susceptibility of erythrocytes to peroxidative lysis in March at the highest levels of TOCAA. The data suggest that under most circumstances a progressive decrease in oxidative stress occurs as dietary TOCAA increases, but higher TOCAA concentrations can stimulate oxidative damage in some situations. Higher levels of TOCAA in the diet were required in March than in December to achieve comparable levels of protection against oxidative damage, which may have been due to physiological changes associated with the parr-smolt transformation. Erythrocytes appeared to be more sensitive to variation in dietary levels of TOCAA than liver and kidney tissues. Using the March ERPL assay results as a baseline, a TOCAA level of approximately 350,600 mg/kg diet would provide adequate protection against lipid peroxidation under most circumstances in juvenile Chinook salmon. [source] Curcumin reduces indomethacin-induced damage in the rat small intestineJOURNAL OF APPLIED TOXICOLOGY, Issue 6 2007Nageswaran Sivalingam Abstract Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used in clinical medicine. Their utility is, however, often limited by the adverse effects they produce in the gastrointestinal tract. Oxidative stress has been shown to occur in the small intestine in response to the oral administration of indomethacin, an NSAID commonly used in toxicity studies. In view of this, the effect of curcumin, an agent with anti-oxidant properties, was evaluated on indomethacin-induced small intestinal damage in a rat model. Rats were pretreated with various doses of curcumin (20 mg kg,1, 40 mg kg,1 and 80 mg kg,1) before administering indomethacin at 20 mg kg,1. Various parameters of oxidative stress and the extent of small intestinal damage produced by indomethacin, with and without pretreatment with curcumin, were measured. Macroscopic ulceration was found to occur in the small intestine in response to indomethacin. The viability of enterocytes from indomethacin-treated animals was significantly lower than those from control animals. Drug-induced oxidative stress was also evident as seen by increases in the levels of malondialdehyde and protein carbonyl and in activities of pro-oxidant enzymes such as myeloperoxidase and xanthine oxidase in indomethacin-treated rats. Concomitant decreases were seen in the activities of the antioxidant enzymes catalase and glutathione peroxidase in these animals. Pretreatment with curcumin was found to ameliorate these drug-induced changes. Thus, curcumin appears to hold promise as an agent that can potentially reduce NSAID-induced small intestinal damage. Copyright © 2007 John Wiley & Sons, Ltd. [source] Nitric Oxide-Mediated Intestinal Injury Is Required for Alcohol-Induced Gut Leakiness and Liver DamageALCOHOLISM, Issue 7 2009Yueming Tang Background:, Alcoholic liver disease (ALD) requires endotoxemia and is commonly associated with intestinal barrier leakiness. Using monolayers of intestinal epithelial cells as an in vitro barrier model, we showed that ethanol-induced intestinal barrier disruption is mediated by inducible nitric oxide synthase (iNOS) upregulation, nitric oxide (NO) overproduction, and oxidation/nitration of cytoskeletal proteins. We hypothesized that iNOS inhibitors [NG-nitro- l -arginine methyl ester (l -NAME), l -N6 -(1-iminoethyl)-lysine (l -NIL)] in vivo will inhibit the above cascade and liver injury in an animal model of alcoholic steatohepatitis (ASH). Methods:, Male Sprague,Dawley rats were gavaged daily with alcohol (6 g/kg/d) or dextrose for 10 weeks ± l -NAME, l -NIL, or vehicle. Systemic and intestinal NO levels were measured by nitrites and nitrates in urine and tissue samples, oxidative damage to the intestinal mucosa by protein carbonyl and nitrotyrosine, intestinal permeability by urinary sugar tests, and liver injury by histological inflammation scores, liver fat, and myeloperoxidase activity. Results:, Alcohol caused tissue oxidation, gut leakiness, endotoxemia, and ASH. l -NIL and l -NAME, but not the d -enantiomers, attenuated all steps in the alcohol-induced cascade including NO overproduction, oxidative tissue damage, gut leakiness, endotoxemia, hepatic inflammation, and liver injury. Conclusions:, The mechanism we reported for alcohol-induced intestinal barrier disruption in vitro , NO overproduction, oxidative tissue damage, leaky gut, endotoxemia, and liver injury , appears to be relevant in vivo in an animal model of alcohol-induced liver injury. That iNOS inhibitors attenuated all steps of this cascade suggests that prevention of this cascade in alcoholics will protect the liver against the injurious effects of chronic alcohol and that iNOS may be a useful target for prevention of ALD. [source] Carthamus tinctorius flower extract prevents H2O2 -induced dysfunction and oxidative damage in osteoblastic MC3T3-E1 cellsPHYTOTHERAPY RESEARCH, Issue 7 2010Eun Mi Choi Abstract The flowers of Carthamus tinctorius L. (Compositae) have been widely used for enhancing blood circulation and postmenopausal disorder in women. In the present study, the potential protective effects of C. tinctorius flower extract (CFE) against reactive oxygen species (ROS) induced osteoblast dysfunction were investigated using osteoblastic MC3T3-E1 cells. The osteoblast function was assessed by measuring alkaline phosphatase activity, collagen content, calcium deposition, and RANKL production, and the oxidative status was assessed by measuring intracellular lipid peroxidation, and protein oxidation in osteoblastic MC3T3-E1 cells. A significant reduction in the alkaline phosphatase activity, collagen, and calcium deposition and an increase in the production of receptor activator of nuclear factor-kB ligand (RANKL) were observed after 0.3,mM H2O2 addition. The H2O2 -induced alterations were prevented by pre-incubating the osteoblasts with 2,10,,g/ml CFE for 48,h. When the oxidative stress was induced by H2O2, the increased production of protein carbonyl and malondialdehyde was also reduced at the same CFE concentration. These results demonstrate that C. tinctorius flower can act as a biological antioxidant in a cell culture experimental model and protect osteoblasts from oxidative stress-induced toxicity. Copyright © 2009 John Wiley & Sons, Ltd. [source] Cardioprotective Effects of Nigella sativa Oil on Cyclosporine A-Induced Cardiotoxicity in RatsBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 6 2008Uz Ebru However, it has been demonstrated that this drug produces side-effects in several organs, particularly in the kidney and in the heart. Nigella sativa oil has long been used in folk medicine for a wide range of illnesses. One of the potential properties of N. sativa oil is the ability of one or more of its constituents to reduce toxicity due to its antioxidant activities. The antioxidant effects of N. sativa oil have been examined using different hepatic and kidney toxicity in in vivo murine models. The aim of this study was to evaluate the effects of N. sativa oil in the antioxidant enzyme status and myocardium of cyclosporine-A-treated rats. This study included 24 male Wistar albino young healthy rats (8,12 weeks) weighing 150,200 g. The control group received sunflower oil (21 days, 2 ml/kg/day, orally) without any treatment. The second group received only N. sativa oil (21 days, 2 ml/kg, orally) (N. sativa oil group). The animals in the third group received only cyclosporine A (21 days, 25 mg/kg, orally) (cyclosporine A group). The animals in the fourth group were treated with cyclosporine A (21 days, 25 mg/kg, orally) and starting one day before cyclosporine A administration were treated with N. sativa oil (21 days, 2 ml/kg, orally) (cyclosporine A +N. sativa oil group). Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities in the heart tissues were significantly reduced in the cyclosporine A group compared to control values. Nigella sativa oil treatment caused an increase in the activities of SOD, CAT and GSH-Px compared to the control group. Malondialdehyde (MDA), nitric oxide and protein carbonyl (PC) levels were increased in the cyclosporine A-treated group in comparison with the control and N. sativa groups. Co-administration of N. sativa oil and cyclosporine A abrogated the cyclosporine A-induced MDA, N. sativa oil and PC increase compared to the cyclosporine A group. The results of our study show that pre-treatment with N. sativa oil reduced the subsequent cyclosporine A injury in rat heart, demonstrated by normalized cardiac histopathology, decrease in lipid peroxidation, improvement in antioxidant enzyme status and cellular protein oxidation. [source] Iron chelation prevents lung injury after major hepatectomyHEPATOLOGY RESEARCH, Issue 8 2010Konstantinos Kalimeris Aim:, Oxidative stress has been implicated in lung injury following ischemia/reperfusion and resection of the liver. We tested whether alleviating oxidative stress with iron chelation could improve lung injury after extended hepatectomy. Methods:, Twelve adult female pigs subjected to liver ischemia for 150 min, 65,70% hepatectomy and reperfusion of the remnant liver for 24 h were randomized to a desferrioxamine (DF) group (n = 6) which received i.v. desferrioxamine to a total dose of 100 mg/kg during both ischemia and reperfusion, and a control (C) group (n = 6). We recorded hemodynamic and respiratory parameters, plasma interleukin-6 and malondialdehyde levels, as well as liver malondialdehyde and protein carbonyls content. Total non-heme iron was measured in lung and liver. Pulmonary tissue was evaluated histologically for its nitrotyrosine and protein carbonyls content and for superoxide dismutase (SOD) and platelet-activating factor acetylhydrolase (PAF-AcH) activities. Results:, Reperfusion of the remnant liver resulted in gradual deterioration of gas-exchange and pulmonary vascular abnormalities. Iron chelation significantly decreased the oxidative markers in plasma, liver and the lung and lowered activities of pulmonary SOD and PAF-AcH. The improved liver function was followed by improved arterial oxygenation and pulmonary vascular resistance. DF also improved alveolar collapse and inflammatory cell infiltration, while serum interleukin-6 increased. Conclusion:, In an experimental pig model that combines liver resection with prolonged ischemia, iron chelation during reperfusion of the remnant liver is associated with improvement of several parameters of oxidative stress, lung injury and arterial oxygenation. [source] Occurrence of oxidative impairments, response of antioxidant defences and associated biochemical perturbations in male reproductive milieu in the Streptozotocin-diabetic ratINTERNATIONAL JOURNAL OF ANDROLOGY, Issue 6 2007B. Shrilatha Summary Oxidative stress is implicated to play a vital role in the pathogenesis of various diabetic complications. While reproductive dysfunction is a well recognized consequence of diabetes mellitus, the underlying mechanisms are poorly understood. The present study aims to obtain insights into the incidence, extent and progression of oxidative impairments in testis and epididymal sperm (ES) in streptozotocin (STZ)-induced diabetic rat during early and progressive phase. Adult rats (CFT-Wistar strain) rendered diabetic by an acute dose of STZ (60 mg/kg bw, i.p.) were examined for induction of hyperglycaemia at 72 h, followed by the assessment of oxidative impairments in testis and ES over a 6-week period. Oxidative damage was ascertained by measuring the malondialdehyde levels, reactive oxygen species (ROS) generation, alterations in antioxidant defences and extent of protein oxidation. STZ induced a significant (2.5-fold) increase in blood glucose levels. In diabetic rats, both testis and ES showed enhanced status of lipid peroxidation measured as increased TBARS and ROS from week 2 onwards. These impairments in testis were consistent, progressive and accompanied by marked alterations in antioxidant defences and elevated protein carbonyls. Varying degree of reduction in the specific activities of antioxidant enzymes was evident in testis and ES, while the activity of glutathione- S -transferase (GST) was significantly elevated. Reduced glutathione (GSH) and vitamin E levels were consistently reduced in testis. Lipid dysmetabolism measured in terms of increased cholesterol, triglycerides and phospholipids was evident only beyond week 2 in diabetic testis. Taken together, these results indicate that the testis and ES are indeed subjected to significant oxidative stress in the STZ-diabetic rat both during early as well as progressive phase. It is hypothesized that oxidative impairments in testis which develop over time may at least in part contribute towards the development of testicular dysfunction eventually leading to testicular degeneration which culminates in reduced fertility during the progressive phase of STZ-induced diabetes in adult rats. [source] Effect of dietary ,-tocopherol + ascorbic acid, selenium, and iron on oxidative stress in sub-yearling Chinook salmon (Oncorhynchus tshawytscha Walbaum)JOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 1 2009T. L. Welker Summary A three-variable central composite design coupled with surface-response analysis was used to examine the effects of dietary ,-tocopherol + ascorbic acid (TOCAA), selenium (Se), and iron (Fe) on indices of oxidative stress in juvenile spring Chinook salmon. Each dietary factor was tested at five levels for a total of fifteen dietary combinations (diets). Oxidative damage in liver and kidney (lipid peroxidation, protein carbonyls) and erythrocytes (erythrocyte resistance to peroxidative lysis, ERPL) was determined after feeding experimental diets for 16 (early December) and 28 (early March) weeks. Only TOCAA influenced oxidative stress in this study, with most measures of oxidative damage decreasing (liver lipid peroxidation in December and March; ERPL in December; liver protein carbonyl in March) with increasing levels of TOCAA. We also observed a TOCAA-stimulated increase in susceptibility of erythrocytes to peroxidative lysis in March at the highest levels of TOCAA. The data suggest that under most circumstances a progressive decrease in oxidative stress occurs as dietary TOCAA increases, but higher TOCAA concentrations can stimulate oxidative damage in some situations. Higher levels of TOCAA in the diet were required in March than in December to achieve comparable levels of protection against oxidative damage, which may have been due to physiological changes associated with the parr-smolt transformation. Erythrocytes appeared to be more sensitive to variation in dietary levels of TOCAA than liver and kidney tissues. Using the March ERPL assay results as a baseline, a TOCAA level of approximately 350,600 mg/kg diet would provide adequate protection against lipid peroxidation under most circumstances in juvenile Chinook salmon. [source] Catechin as an antioxidant in liver mitochondrial toxicity: Inhibition of tamoxifen-Induced protein oxidation and lipid peroxidation,JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 3 2007Heena Tabassum Abstract Tamoxifen (TAM) is a nonsteroidal triphenylethylene antiestrogenic drug widely used in the treatment and prevention of breast cancer. TAM brings about a collapse of the mitochondrial membrane potential. It acts both as an uncoupling agent and as a powerful inhibitor of mitochondrial electron transport chain. The effect of catechin pretreatment on the mitochondrial toxicity of TAM was studied in liver mitochondria of Swiss albino mice. TAM treatment caused a significant increase in the mitochondrial lipid peroxidation (LPO) and the protein carbonyls (PCs). It also caused a significant increase in superoxide radical production. Pretreatment of mice with catechin (40 mg/kg) showed significant protection as demonstrated by marked attenuation of increased oxidative stress parameters such LPO, PCs, and superoxide production. It also restored the decreased nonenzymatic and enzymatic antioxidants of mitochondria. The inhibitory effect of catechin on TAM-induced oxidative damage suggests that it may have potential benefits in prevention of human diseases where reactive oxygen species have some role as causative agents. © 2007 Wiley Periodicals, Inc. J Biochem Mol Toxicol 21:110,117, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20167 [source] Effects of ageing on carbonyl stress and antioxidant defense in RBCs of obese Type 2 diabetic patientsJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 3 2005Alina Constantin Abstract In this study we investigated the effects of ageing on the carbonyl stress (protein carbonyls and 4-hydroxy-2-nonenal groups) and glutathione antioxidant defense in red blood cells (RBCs) of obese Type 2 diabetic patients with/without hypertensive complications. To this purpose the following methods were used: spectrophotometry (protein carbonyls, glutathione and glutathione peroxidase assays), immunofluorescence (4-hydroxy-2-nonenal localization), western blotting (immunodetection of carbonylated proteins). The results showed that compared to RBCs of healthy subjects, in obese Type 2 diabetics, ageing is associated with: (i) an increase in the concentration and expression of carbonylated proteins, a marker of oxidative stress; (ii) a decrease of both non-enzymatic and enzymatic endogenous glutathione defenses; (iii) a severely disturbed oxidant/antioxidant balance when obesity was associated with hypertension. The simultaneous insults of high blood pressure, obesity, and diabetes conducted to the highest carbonyl strss, exposure of 4-hydroxy-2-nonenal Michel adducts at the outer leaflet of RBCs plasmalemma, and the lowest glutathione antioxidant potential, particularly in elderly patients. These results can explain the gradual age-dependent diminishment of the detoxification potenital of RBCs that at the old age can not overcome the deleterious effects of the high systemic oxidative stress. [source] Ameliorative potential of resveratrol on proinflammatory cytokines, hyperglycemia mediated oxidative stress, and pancreatic ,-cell dysfunction in streptozotocin-nicotinamide-induced diabetic ratsJOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2010P. Palsamy Chronic exposure of pancreatic ,-cells to supraphysiologic glucose causes adverse ,-cell dysfunction. Thus, the present study was aimed to investigate the hypothesis that oral administration of resveratrol attenuates hyperglycemia, proinflammatory cytokines and antioxidant competence and protects ,-cell ultrastructure in streptozotocin-nicotinamide-induced diabetic rats. Oral administration of resveratrol (5,mg/kg body weight) to diabetic rats for 30 days showed a significant decline in the levels of blood glucose, glycosylated hemoglobin (HbA1c), TNF-,, IL-1,, IL-6, NF-,B p65 unit and nitric oxide (NO) with concomitant elevation in plasma insulin. Further, resveratrol treated diabetic rats elicited a notable attenuation in the levels of lipid peroxides, hydroperoxides and protein carbonyls in both plasma and pancreatic tissues. The diminished activities of pancreatic superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and glutathione-S-transferase (GST) as well as the decreased levels of plasma ceruloplasmin, vitamin C, vitamin E and reduced glutathione (GSH) in diabetic rats were reverted to near normalcy by resveratrol administration. Based on histological and ultrastructural observations, it is first-time reported that the oral administration of resveratrol may effectively rescue ,-cells from oxidative damage without affecting their function and structural integrity. The results of the present investigation demonstrated that resveratrol exhibits significant antidiabetic potential by attenuating hyperglycemia, enhancing insulin secretion and antioxidant competence in pancreatic ,-cells of diabetic rats. J. Cell. Physiol. 224: 423,432, 2010. © 2010 Wiley-Liss, Inc. [source] Amelioration of Cadmium-Induced Oxidative Stress, Impairment in Lipids and Plasma Lipoproteins by the Combined Treatment with Quercetin and ,-Tocopherol in RatsJOURNAL OF FOOD SCIENCE, Issue 7 2010S. Milton Prabu Abstract:, Cadmium (Cd) exposure results in numerous pathological consequences including oxidative stress and dyslipidemia. The present study was designed to investigate the efficacy of combined treatment with quercetin (QE) and ,-tocopherol (AT) against Cd-induced oxidative stress and alterations in lipids and lipoproteins in the plasma and liver of rats. Oral administration of Cd (5 mg/kg bw/d) for 4 wk has shown a significant (P < 0.05) increase in thiobarbituric acid reactive substances (TBARS), lipid hydro peroxides (LOOH), total cholesterol, low density lipoprotein cholesterol (LDL-C), very low density lipoprotein cholesterol (VLDL-C), free fatty acids (FFA), phospholipids (PL), triglycerides (TGs), and the activity of hydroxyl-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) in plasma with a significant (P > 0.05) reduction in the levels of reduced glutathione (GSH), high density lipoprotein cholesterol (HDL-C), and the activity of lecithin cholesterol acyl transferase (LCAT) in plasma. In addition, the levels of hepatic thiobarbituric acid reactive substances (TBARS), LOOH, conjugated dienes (CD), protein carbonyls (PC), and the activity of HMG-CoA reductase, levels of cholesterol, FFA, and TGs were significantly (P > 0.05) increased and the level of PL is significantly (P > 0.05) decreased along with the decreased activity of LCAT in the liver of Cd-treated rats. Oral supplementation with QE (50 mg/kg bw/d) and AT (50 mg/kg bw/d) for 4 wk in Cd intoxicated rats significantly (P > 0.05) has reduced the plasma levels of TBARS, LOOH, GSH, cholesterol, FFA, TGs, VLDL-C, LDL-C, and the activity of HMG-CoA and significantly (P > 0.05) has increased the activity of LCAT and the plasma levels of HDL-C. The oral supplementation also significantly (P > 0.05) has reduced the hepatic oxidative stress markers, cholesterol, TGs, FFA, and significantly (P > 0.05) has increased the LCAT activity and the PL in liver. Our results indicate that the combined treatment with QE and AT has normalized all the previously mentioned biochemical parameters in Cd-intoxicated rats than the individual treatments. The combined treatment has provided remarkable protection against Cd-induced oxidative stress and alterations in lipid metabolism and, thereby, reduced the Cd-mediated cardiovascular diseases. [source] Effect of Exogenous and Endogenous Antioxidants on 3-Nitropionic Acid-Inducedin vivo Oxidative Stress and Striatal LesionsJOURNAL OF NEUROCHEMISTRY, Issue 4 2000Insights into Huntington's Disease Abstract: 3-Nitropropionic acid (3-NP) is an irreversible inhibitor of complex II in the mitochondria. 3-NP toxicity has gained acceptance as an animal model of Huntington's disease (HD). In the present study, we confirmed that rats injected with 3-NP (20 mg/kg, i.p., daily for 4 days) exhibit increased oxidative stress in both striatum and cortical synaptosomes as well as lesions in the striatum. Synaptosomal membrane proteins from rats injected with 3-NP exhibited a decrease in W/S ratio, the relevant electron paramagnetic resonance (EPR) parameter used to determine levels of protein oxidation, and western blot analysis for protein carbonyls revealed direct evidence of increased synaptosomal protein oxidation. Treatment of rats with the brain-accessible free radical spin trap 5-diethoxyphosphoryl-5-methyl-1-pyrroline N -oxide (DEPMPO; 30 mg/kg, i.p., daily 2 h before 3-NP injection) or with N -acetylcysteine (NAC; 100 mg/kg, i.p., daily 2 h before 3-NP injection), a known glutathione precursor, before 3-NP treatments protects against oxidative damage induced by 3-NP as measured by EPR and western blot analysis for protein carbonyls. Furthermore, both DEMPMPO and NAC treatments before 3-NP administration significantly reduce striatal lesion volumes. These data suggest oxidative damage is a prerequisite for striatal lesion formation and that antioxidant treatment may be a useful therapeutic strategy against 3-NP neurotoxicity and perhaps against HD as well. [source] Differential effects of the mitochondrial uncoupling agent, 2,4-dinitrophenol, or the nitroxide antioxidant, Tempol, on synaptic or nonsynaptic mitochondria after spinal cord injuryJOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2009Samir P. Patel Abstract We recently documented the progressive nature of mitochondrial dysfunction over 24 hr after contusion spinal cord injury (SCI), but the underlying mechanism has not been elucidated. We investigated the effects of targeting two distinct possible mechanisms of mitochondrial dysfunction by using the mitochondrial uncoupler 2,4-dinitrophenol (2,4-DNP) or the nitroxide antioxidant Tempol after contusion SCI in rats. A novel aspect of this study was that all assessments were made in both synaptosomal (neuronal)- and nonsynaptosomal (glial and neuronal soma)-derived mitochondria 24 hr after injury. Mitochondrial uncouplers target Ca2+ cycling and subsequent reactive oxygen species production in mitochondria after injury. When 2,4-DNP was injected 15 and 30 min after injury, mitochondrial function was preserved in both populations compared with vehicle-treated rats, whereas 1 hr postinjury treatment was ineffective. Conversely, targeting peroxynitrite with Tempol failed to maintain normal bioenergetics in synaptic mitochondria, but was effective in nonsynaptic mitochondria when administered 15 min after injury. When administered at 15 and 30 min after injury, increased hydroxynonenal, 3-NT, and protein carbonyl levels were significantly reduced by 2,4-DNP, whereas Tempol only reduced 3-NT and protein carbonyls after SCI. Despite such antioxidant effects, only 2,4-DNP was effective in preventing mitochondrial dysfunction, indicating that mitochondrial Ca2+ overload may be the key mechanism involved in acute mitochondrial damage after SCI. Collectively, our observations demonstrate the significant role that mitochondrial dysfunction plays in SCI neuropathology. Moreover, they indicate that combinatorial therapeutic approaches targeting different populations of mitochondria holds great potential in fostering neuroprotection after acute SCI. © 2008 Wiley-Liss, Inc. [source] Difluoromethylornithine Decreases Long-Lasting Protein Oxidation Induced by Neonatal Ethanol Exposure in the Hippocampus of Adolescent RatsALCOHOLISM, Issue 5 2007Carlos Fernando Mello Background: Ethanol exposure and withdrawal during central nervous system development can cause oxidative stress and produce severe and long-lasting behavioral and morphological alterations in which polyamines seem to play an important role. However, it is not known if early ethanol exposure causes long-lasting protein oxidative damage and if polyamines play a role in such a deleterious effect of ethanol. Methods: In this study we investigated the effects of early ethanol exposure (6 g/kg/d, by gavage), from postnatal day (PND) 1 to 8, and of the administration of difluoromethylornithine (DFMO, 500 mg/kg, i.p., on PND 8), a polyamine biosynthesis inhibitor, on the extent of oxidative modification of proteins. Indices of oxidative modification of proteins included protein carbonyls, 3-nitrotyrosine (3-NT), and protein bound 4-hydroxynonenal (HNE) in the hippocampus, cerebellum, hypothalamus, striatum, and cerebral cortex of Sprague,Dawley rats at PND 40. Results: Both ethanol and DFMO administration alone increased protein carbonyl immunoreactivity in the hippocampus at PND 40, but the combination of DFMO and ethanol resulted in no effect on protein carbonyl levels. No alterations in the content of protein-bound HNE, 3-NT, or carbonyl were found in any other cerebral structure. Conclusions: These results suggest that the hippocampus is selectively affected by early ethanol exposure and by polyamine synthesis inhibition. In addition, the results suggest a role for polyamines in the long-lasting increase of protein carbonyls induced by ethanol exposure and withdrawal. [source] Modifications and oxidation of lipids and proteins in human serum detected by thermochemiluminescenceLUMINESCENCE: THE JOURNAL OF BIOLOGICAL AND CHEMICAL LUMINESCENCE, Issue 2 2003Sergei Shnizer Abstract Detection of electronically excited species (EES) in body fluids may constitute an important diagnostic tool in various pathologies. Examples of such products are triplet excited carbonyls (TEC), which can be a source for photon emission in the 400,550,nm range. The aim of the present study was to determine the actual contribution of lipid and protein components (protein carbonyls) to photon emission generated by thermochemiluminescence (TCL) during the heating of biological fluids. In this study, a new TCL Photometer device, designed by Lumitest Ltd, Israel, was used. Samples were heated to a constant temperature of 80,±,0.5°C for 280,s and photon emission was measured at several time points. In order to compare the results of TCL measurements to conventional methods of detecting lipid and protein oxidation, each examined sample was also heated in a waterbath at 80°C for 10,280,s. Lipid and protein oxidation were subsequently measured using conventional methods. The TCL of four polyunsaturated fatty acids (PUFA) with three to six double bonds was measured. The elevation of the PUFA TCL amplitude correlated with the increase in the number of double bonds of PUFA. A correlation between the increase in TCL intensity and protein carbonyl generation in bovine serum albumin (BSA) was also observed. In the venous blood serum, our study showed that an increase of TCL intensity during heating reflected the cleavage of TEC of lipid origin. Our study suggests that biological molecules such as proteins, lipids and other molecules, which may become unstable during heating, are capable of generating EES. We demonstrated that a TCL curve can be used as a kinetic model for measuring oxidative processes, which reflects modifications of different molecules involved in the oxidative stress phenomena. Copyright © 2003 John Wiley & Sons, Ltd. [source] Oxidative stress and antioxidant enzyme upregulation in SOD1-G93A mouse skeletal muscleMUSCLE AND NERVE, Issue 6 2006Douglas J. Mahoney PhD Abstract Amyotrophic lateral sclerosis (ALS) is caused by motor neuron loss in the spinal cord, but the mechanisms responsible are not known. Ubiquitous transgenic overexpression of copper/zinc superoxide dismutase (SOD1) mutations causing familial ALS (SOD1mut) leads to an ALS phenotype in mice; however, restricted expression of SOD1mut in neurons alone is not sufficient to cause this phenotype, suggesting that non-neuronal SOD1mut expression is also required for disease manifestation. Recently, several investigators have suggested that SOD1mut -mediated oxidative stress in skeletal muscle may contribute to ALS pathogenesis. The purpose of this study was to examine oxidative stress and antioxidant enzyme adaptation in 95-day-old SOD1-G93A skeletal muscle. We observed significant elevations in both malondialdehyde (22% and 31% in red and white gastrocnemius, respectively) and protein carbonyls (53% in red gastrocnemius) in SOD1-G93A mice. Copper/zinc SOD activity was higher in red and white SOD1-G93A gastrocnemius (7- and 10-fold, respectively), as was manganese SOD (4- and 5-fold, respectively) and catalase (2- and 2.5-fold, respectively). Taken together, our data demonstrate oxidative stress and compensatory antioxidant enzyme upregulation in SOD1-G93A skeletal muscle. Muscle Nerve, 2006 [source] Bilirubin influence on oxidative lung damage and surfactant surface tension propertiesPEDIATRIC PULMONOLOGY, Issue 3 2004Carlo Dani MD Abstract To study the hypothesis that hyperbilirubinemia might reduce in vivo oxidative lung damage while also diminishing lung surfactant surface tension properties during acute lung injury, we performed a randomized study in a rabbit model of acute lung injury. Twenty rabbits were randomized to receive bilirubin or saline intravenously. Acute lung injury was induced by lung lavages with saline. Lung tissue oxidation was evaluated by measuring total hydroperoxide (TH), advanced oxidation protein products (AOPP), and protein carbonyls (PC) in bronchial aspirate (BA) samples. Surface surfactant activity was studied in BA samples using a capillary surfactometer. Bilirubin BA concentration increased in bilirubin-treated rabbits, while it remained undetectable in controls. A similar increase in TH, AOPP, and PC bronchial aspirate concentrations was found in both the study and control groups, while surfactant surface activity was lower in the bilirubin than in the control group. We conclude that during hyperbilirubinemia, bilirubin enters the lung tissue, where it can be detected in BA fluid. Bilirubin is not effective as an antioxidant agent and exerts a detrimental effect on lung surfactant surface tension properties. These findings may have relevance to the management of premature neonates suffering from respiratory distress syndrome and hyperbilirubinemia. Pediatr Pulmonol. © 2004 Wiley-Liss, Inc. [source] Prophylaxis with Centella asiatica confers protection to prepubertal mice against 3-nitropropionic-acid-induced oxidative stress in brainPHYTOTHERAPY RESEARCH, Issue 6 2010George K. Shinomol Abstract While the usage of Centella asiatica (CA) is on the increase worldwide, evidence demonstrating its protective efficacy against neurotoxicants is scarce. Hence the present study aimed to understand the neuroprotective efficacy of a standardized aqueous extract of CA against 3-nitropropionic-acid(3-NPA)-induced oxidative stress in the brain of prepubertal mice. We assessed the degree of oxidative stress in cytoplasm of brain regions of male mice (4,wk- old) given CA prophylaxis (5,mg/kg bw) for 10 days followed by 3-NPA administration (i.p.75,mg/kg bw) on the last 2 days. The neurotoxicant elicited marked oxidative stress in the brain of untreated mice as evident by enhanced malondialdehyde levels, reactive oxygen species (ROS) generation, hydroperoxides and protein carbonyls (a measure of protein oxidation) in striatum and other regions (cortex, cerebellum and hippocampus), while CA prophylaxis completely ameliorated the 3-NPA- induced oxidative stress. Depletion of glutathione (GSH) levels, total thiols, perturbations in antioxidant enzymes and cholinergic enzymes in brain discernible among 3-NPA-treated mice were predominantly restored to normalcy with CA prophylaxis. It is hypothesized that the prophylactic protection offered by CA extract against neurotoxicant exposure may be largely due to its ability to enhance GSH, thiols and antioxidant defenses in the brain of prepubertal mice. Copyright © 2009 John Wiley & Sons, Ltd. [source] Protective effects of N-acetyl- L -cysteine against acute carbon tetrachloride hepatotoxicity in ratsCELL BIOCHEMISTRY AND FUNCTION, Issue 1 2008Yu. Z. Maksimchik Abstract In recent years, N-acetyl- L -cysteine (NAC) has been widely investigated as a potentially useful protective and antioxidative agent to be applied in many pathological states. The aim of the present work was further evaluation of the mechanisms of the NAC protective effect under carbon tetrachloride-induced acute liver injuries in rats. The rat treatment with CCl4 (4,g/kg, intragastrically) caused pronounced hepatolysis observed as an increase in blood plasma bilirubin levels and hepatic enzyme activities, which agreed with numerous previous observations. The rat intoxication was accompanied by an enhancement of membrane lipid peroxidation (1.4-fold) and protein oxidative damage (protein carbonyl group and mixed protein-glutathione disulphide formations) in the rat liver. The levels of nitric oxide in blood plasma and liver tissue significantly increased (5.3- and 1.5-fold, respectively) as blood plasma triacylglycerols decreased (1.6-fold). The NAC administration to control and intoxicated animals (three times at doses of 150,mg/kg) elevated low-molecular-weight thiols in the liver. The NAC administration under CCl4 -induced intoxication prevented oxidative damage of liver cells, decreased membrane lipid peroxidation, protein carbonyls and mixed protein-glutathione disulphides formation, and partially normalized plasma triacylglycerols. At the same time the NAC treatment of intoxicated animals did not produce a marked decrease of the elevated levels of blood plasma ALT and AST activities and bilirubin. The in vitro exposure of human red blood cells to NAC increased the cellular low-molecular-weight thiol levels and retarded tert -butylhydroperoxide-induced cellular thiol depletion and membrane lipid peroxidation as well as effectively inhibited hypochlorous acid-induced erythrocyte lysis. Thus, NAC can replenish non-protein cellular thiols and protect membrane lipids and proteins due to its direct radical-scavenging properties, but it did not attenuate hepatotoxicity in the acute rat CCl4 -intoxication model. Copyright © 2007 John Wiley & Sons, Ltd. [source] Relationship between oxidative stress-related biomarkers and antioxidant status with asthma and atopy in young adults: a population-based studyCLINICAL & EXPERIMENTAL ALLERGY, Issue 3 2009V. García-Larsen Summary Background and aim Enhanced oxidative stress has been described in adults who suffer from symptoms of asthma and poor lung function. This study assessed the relation between markers of oxidative stress and antioxidant status and lung function, symptoms of asthma, atopy and bronchial hyperresponsiveness (BHR) in young adults. Methods A sub-sample of 589 individuals aged 22,28 years, selected from a total of 1232 included in a survey assessing early and current risk factors for chronic diseases, participated in the study. Participants were from an agricultural area of Chile, responded to a Spanish version of the European Community Respiratory Health Survey questionnaire, were skin tested to eight allergens, and challenged with methacholine to assess BHR. Five hundred and eighty-five individuals had measures of plasma biomarkers ferric reducing ability of plasma, uric acid, protein carbonyls and 564 had 8-iso-prostaglandin F2, (8-iso-PGF2,) assessed. Results All participants had detectable plasma 8-iso-PGF2, and carbonyl levels. There was no indication for an association between markers of antioxidant status or oxidative stress with any of the outcomes studied. Conclusion The levels of oxidative stress-related biomarkers and antioxidant status in plasma may not be related to asthma in the general population in the absence of more severe symptoms or exacerbations. [source] |