Proteasome Dysfunction (proteasome + dysfunction)

Distribution by Scientific Domains


Selected Abstracts


Dysregulated Cytokine Metabolism, Altered Hepatic Methionine Metabolism and Proteasome Dysfunction in Alcoholic Liver Disease

ALCOHOLISM, Issue 2005
Craig McClain
Abstract: Alcoholic liver disease (ALD) remains an important complication and cause of morbidity and mortality from alcohol abuse. Major developments in our understanding of the mechanisms of ALD over the past decade are now being translated into new forms of therapy for this disease process which currently has no FDA approved treatment. Cytokines are low molecular weight mediators of cellular communication, and the pro-inflammatory cytokine tumor necrosis factor (TNF) has been shown to play a pivotal role in the development of experimental ALD. Similarly, TNF levels are elevated in the serum of alcoholic hepatitis patients. Abnormal methionine metabolism is well documented in patients with ALD, with patients having elevated serum methionine levels, but low S-adenosylmethionine levels in the liver. On the other hand, S-adenosylhomocysteine and homocysteine levels are elevated in ALD. Recent studies have documented potential interactions between homocysteine and S-adenosylhomocysteine with TNF in the development of ALD. Altered proteasome function also is now well documented in ALD, and decreased proteasome function can cause hepatocyte apoptosis. Recently it has been shown that decreased proteasome function can also act synergistically to enhance TNF hepatotoxicity. Hepatocytes dying of proteasome dysfunction release pro-inflammatory cytokines such as Interleukin-8 to cause sustained inflammation. This article reviews the interactions of cytokines, altered methionine metabolism, and proteasome dysfunction in the development of ALD. [source]


BimEL as a possible molecular link between proteasome dysfunction and cell death induced by mutant huntingtin

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2010
Rebecca Leon
Abstract Huntington's disease (HD) is a devastating neurodegenerative disorder caused by an expanded polyglutamine repeat within the N-terminus of the huntingtin protein. It is characterized by a selective loss of medium spiny neurons in the striatum. It has been suggested that impaired proteasome function and endoplasmic reticulum (ER) stress play important roles in mutant huntingtin (mHtt)-induced cell death. However, the molecular link involved is poorly understood. In the present study, we identified the essential role of the extra long form of Bim (Bcl-2 interacting mediator of cell death), BimEL, in mHtt-induced cell death. BimEL protein expression level was significantly increased in cell lines expressing the N-terminus of mHtt and in a mouse model of HD. Although quantitative RT-PCR analysis indicated that BimEL mRNA was increased in cells expressing mHtt, we provided evidence showing that, at the post-translational level, phosphorylation of BimEL played a more important role in regulating BimEL expression. Up-regulation of BimEL facilitated the translocation of Bax to the mitochondrial membrane, which further led to cytochrome c release and cell death. On the other hand, knocking down BimEL expression prevented mHtt-induced cell death. Taken together, these findings suggest that BimEL is a key element in regulating mHtt-induced cell death. A model depicting the role of BimEL in linking mHtt-induced ER stress and proteasome dysfunction to cell death is proposed. [source]


Dysfunction of the unfolded protein response increases neurodegeneration in aged rat hippocampus following proteasome inhibition

AGING CELL, Issue 6 2009
María Paz Gavilán
Summary Dysfunctions of the ubiquitin proteasome system (UPS) have been proposed to be involved in the aetiology and/or progression of several age-related neurodegenerative disorders. However, the mechanisms linking proteasome dysfunction to cell degeneration are poorly understood. We examined in young and aged rat hippocampus the activation of the unfolded protein response (UPR) under cellular stress induced by proteasome inhibition. Lactacystin injection blocked proteasome activity in young and aged animals in a similar extent and increased the amount of ubiquitinated proteins. Young animals activated the three UPR arms, IRE1,, ATF6, and PERK, whereas aged rats failed to induce the IRE1, and ATF6, pathways. In consequence, aged animals did not induce the expression of pro-survival factors (chaperones, Bcl-XL and Bcl-2), displayed a more sustained expression of pro-apoptotic markers (CHOP, Bax, Bak and JKN), an increased caspase-3 processing. At the cellular level, proteasome inhibition induced neuronal damage in young and aged animals as assayed using Fluorojade-B staining. However, degenerating neurons were evident as soon as 24 h postinjection in aged rats, but it was delayed up to 3 days in young animals. Our findings show evidence supporting age-related dysfunctions in the UPR activation as a potential mechanism linking protein accumulation to cell degeneration. An imbalance between pro-survival and pro-apoptotic proteins, because of noncanonical activation of the UPR in aged rats, would increase the susceptibility to cell degeneration. These findings add a new molecular vision that might be relevant in the aetiology of several age-related neurodegenerative disorders. [source]


Dysregulated Cytokine Metabolism, Altered Hepatic Methionine Metabolism and Proteasome Dysfunction in Alcoholic Liver Disease

ALCOHOLISM, Issue 2005
Craig McClain
Abstract: Alcoholic liver disease (ALD) remains an important complication and cause of morbidity and mortality from alcohol abuse. Major developments in our understanding of the mechanisms of ALD over the past decade are now being translated into new forms of therapy for this disease process which currently has no FDA approved treatment. Cytokines are low molecular weight mediators of cellular communication, and the pro-inflammatory cytokine tumor necrosis factor (TNF) has been shown to play a pivotal role in the development of experimental ALD. Similarly, TNF levels are elevated in the serum of alcoholic hepatitis patients. Abnormal methionine metabolism is well documented in patients with ALD, with patients having elevated serum methionine levels, but low S-adenosylmethionine levels in the liver. On the other hand, S-adenosylhomocysteine and homocysteine levels are elevated in ALD. Recent studies have documented potential interactions between homocysteine and S-adenosylhomocysteine with TNF in the development of ALD. Altered proteasome function also is now well documented in ALD, and decreased proteasome function can cause hepatocyte apoptosis. Recently it has been shown that decreased proteasome function can also act synergistically to enhance TNF hepatotoxicity. Hepatocytes dying of proteasome dysfunction release pro-inflammatory cytokines such as Interleukin-8 to cause sustained inflammation. This article reviews the interactions of cytokines, altered methionine metabolism, and proteasome dysfunction in the development of ALD. [source]