Home About us Contact | |||
Atrial Sites (atrial + site)
Selected AbstractsAn Acute Model for Atrial Fibrillation Arising from a Peripheral Atrial Site: Evidence for Primary and Secondary TriggersJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 5 2008BENJAMIN J. SCHERLAG Ph.D. Background: We previously demonstrated that acetylcholine (Ach) injected into cardiac ganglionated plexi (GP) causes pulmonary vein (PV) ectopy initiating atrial fibrillation (AF). Objective: To determine the effects of Ach applied at non-PV sites. Methods: Overall, 54 dogs were anesthetized with Na-pentobarbital. A right and left thoracotomy allowed the placement of multielectrode catheters to record from the superior PVs, mid portion of the atrium and the atrial appendages (AA). A monophasic action potential (MAP) was recorded from the AA. Ach (1, 10, 100 mM) was applied sequentially to the AA. Results: In 19 of 26 animals, Ach 100 mM on the right (n = 15) or left (n = 4) AA induced focal, sustained AF (,10 minutes) with rapid regular firing (cycle length = 37 ± 7 ms) at the AA. A clamp with teeth placed across the AA caused arrest in the AA. However, AF was sustained only when PV sites adjacent to the GP manifested complex fractionated atrial electrograms (CFAE). Clamping the AA prior to Ach (100 mM) application resulted in focal AF arising at the PVs but not at the AA. When a clamp without teeth was applied prior to Ach application, no AF at either AA or PV site could be induced. Conclusion: Isolation of the focal AF at the AA (primary trigger) by clamping caused cessation of activity in the AA, but AF continued due to secondary triggers arising from PVs. The possible mechanism(s) responsible for these findings are discussed, and various ancillary experiments (n = 28) were added to help elucidate mechanisms. [source] A Novel Pacing Maneuver to Localize Focal Atrial TachycardiaJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 1 2007F.R.A.C.P., UWAIS MOHAMED M.B.B.S. Background: Although focal atrial tachycardias cannot be entrained, we hypothesized that atrial overdrive pacing (AOP) can be an effective adjunct to localize the focus of these tachycardias at the site where the post-pacing interval (PPI) is closest to the tachycardia cycle length (TCL). Methods: Overdrive pacing was performed in nine patients during atrial tachycardia, and in a comparison group of 15 patients during sinus rhythm. Pacing at a rate slightly faster than atrial tachycardia in group 1 and sinus rhythm in group 2 was performed from five standardized sites in the right atrium and coronary sinus. The difference between the PPI and tachycardia or sinus cycle length (SCL) was recorded at each site. The tachycardia focus was then located and ablated in group 1, and the atrial site with earliest activation was mapped in group 2. Results: In both groups the PPI-TCL at the five pacing sites reflected the distance from the AT focus or sinus node. In group 1, PPI-TCL at the successful ablation site was 11 ± 8 msec. In group 2, PPI-SCL at the site of earliest atrial activation was 131 ± 37 msec (P < 0.001 for comparison). In groups 1 and 2, calculated values at the five pacing sites were proportional to the distance from the AT focus or sinus node, respectively. Conclusions: The PPI-TCL after-AOP of focal atrial tachycardia has a direct relationship to proximity of the pacing site to the focus, and may be clinically useful in finding a successful ablation site. [source] The VA Relationship After Differential Atrial Overdrive Pacing: A Novel Tool for the Diagnosis of Atrial Tachycardia in the Electrophysiologic LaboratoryJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 11 2007MITSUNORI MARUYAMA M.D. Introduction: Despite recent advances in clinical electrophysiology, diagnosis of atrial tachycardia (AT) originating near Koch's triangle remains challenging. We sought a novel technique for rapid and accurate diagnosis of AT in the electrophysiologic laboratory. Methods: Sixty-two supraventricular tachycardias including 18 ATs (10 ATs arising from near Koch's triangle), 32 atrioventricular nodal reentrant tachycardias (AVNRTs), and 12 orthodromic reciprocating tachycardias (ORTs) were studied. Overdrive pacing during the tachycardia from different atrial sites was performed, and the maximal difference in the postpacing VA intervals (last captured ventricular electrogram to the earliest atrial electrogram of the initial beat after pacing) among the different pacing sites was calculated (delta-VA interval). Results: The delta-VA intervals were >14 ms in all AT patients and <14 ms in all AVNRT/ORT patients, and thus, the delta-VA interval was diagnostic for AT with the sensitivity, specificity, and positive and negative predictive values all being 100%. When the diagnostic value of the delta-VA interval and conventional maneuvers were compared for differentiating AT from atypical AVNRT, both a delta-VA interval >14 ms and "atrial-atrial-ventricular" response after overdrive ventricular pacing during the tachycardia were diagnostic. However, the "atrial-atrial-ventricular" response criterion was available in only 52% of the patients because of poor ventriculoatrial conduction. Conclusions: The delta-VA interval was useful for diagnosing AT irrespective of patient conditions such as ventriculoatrial conduction. [source] Esophageal Temperature During Radiofrequency-Catheter Ablation of Left Atrium: A Three-Dimensional Computer Modeling StudyJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 4 2006FERNANDO HORNERO M.D., Ph.D. Introduction: There is current interest in finding a way to minimize thermal injury in the esophagus during radiofrequency-catheter ablation of the left atrium. Despite the fact that the esophageal temperature is now being monitored during ablation, the influence of different anatomic and technical factors on the temperature rise remains unknown. Methods and Results: We implemented a three-dimensional computational model that included atrial tissue, epicardial fat, esophagus, aorta, and lung, all linked by connective tissue. The finite-element method was used to calculate the esophageal temperature distribution during a procedure of constant-temperature ablation with an 8-mm electrode, under different tissue conditions. Results showed that the distance between electrode and esophagus was the most important anatomic factor in predicting the esophageal temperature rise, the composition of the different tissues being of lesser importance. The measurement of the esophageal temperature in different sites of the lumen offered differences up to 3.7°C, especially for a short electrode,esophagus distance (5 mm). The difference in the convective cooling by circulating blood around electrode and endocardium did not show a significant influence on the esophageal temperature rise. Conclusion: Computer results suggest that (1) the electrode,esophagus distance is the most important anatomic factor; (2) the incorrect positioning of an esophageal temperature probe could give a low reading for the maximum temperature reached in the esophagus; and (3) the different cooling effect of the circulating blood flow at different atrial sites has little impact on the esophageal temperature rise. [source] Creating Continuous Linear Lesions in the Atria: A Comparison of the Multipolar Ablation Technique Versus the Conventional Drag-and-BurnJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 8 2005WILBER W. SU M.D. Introduction: Catheter-based treatment of atrial fibrillation (AF) requires the isolation of the triggering foci as well as modification of the atria with substrate that sustains AF. The creation of linear lesions in the left atrium with standard radiofrequency ablative methods requires long procedural times with unpredictable results. Methods: The simultaneous delivery of phase-shifted radiofrequency energy from a multipolar catheter was compared to the conventional drag-and-burn technique for creating linear lesions in 10 dogs. Four atrial sites were targeted under intracardiac ultrasound and fluoroscopic guidance in each of 10 dogs. The conventional drag-and-burn technique or the multipolar phase-shifted ablation catheter was randomly applied for 60 seconds and compared. Results: Creating linear lesions using the simultaneous multipolar phase-shifted ablation catheter was on average 11.0 minutes faster (33.6 minutes vs 44.6 minutes, P < 0.01) than the drag-and-burn method. The fraction of the lesion length achieved using phase-shifted ablation compared to that intended was 23% greater (76% vs 53%, P < 0.01), and has less discontinuities (0.1 compared to 0.8 discontinuities/line, P < 0.003). There was no significant difference in either the lesion transmurality, or fluoroscopy times. Conclusion: The simultaneous delivery of phase-shifted, radiofrequency energy using a multipolar catheter is more effective and efficient in producing linear lesions than the traditional drag-and-burn technique. Using the multipolar ablative method to create linear lesions may be a useful technique in the treatment of patients with substrate-mediated atrial fibrillation. [source] Detection of Inadvertent Catheter Movement into a Pulmonary Vein During Radiofrequency Catheter Ablation by Real-Time Impedance MonitoringJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 6 2004PETER CHEUNG M.D. Introduction: During radiofrequency ablation to encircle or isolate the pulmonary veins (PVs), applications of radiofrequency energy within a PV may result in stenosis. The aim of this study was to determine whether monitoring of real-time impedance facilitates detection of inadvertent catheter movement into a PV. Methods and Results: In 30 consecutive patients (mean age 53 ± 11 years) who underwent a left atrial ablation procedure, the three-dimensional geometry of the left atrium, the PVs, and their ostia were reconstructed using an electroanatomic mapping system. The PV ostia were identified based on venography, changes in electrogram morphology, and manual and fluoroscopic feedback as the catheter was withdrawn from the PV into the left atrium. Real-time impedance was measured at the ostium, inside the PV at approximately 1 and 3 cm from the ostium, in the left atrial appendage, and at the posterior left atrial wall. There was an impedance gradient from the distal PV (127 ± 30 ,) to the proximal PV (108 ± 15 ,) to the ostium (98 ± 11 ,) in each PV (P < 0.01). There was no significant impedance difference between the ostial and left atrial sites. During applications of radiofrequency energy, movement of the ablation catheter into a PV was accurately detected in 80% of the cases (20) when there was an abrupt increase of ,4 , in real-time impedance. Conclusion: There is a significant impedance gradient from the distal PV to the left atrium. Continuous monitoring of the real-time impedance facilitates detection of inadvertent catheter movement into a PV during applications of radiofrequency energy. (J Cardiovasc Electrophysiol, Vol. 15, pp. 1-5, June 2004) [source] Reversal of Electrical Remodeling After Cardioversion of Persistent Atrial FibrillationJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 5 2004MERRITT H. RAITT M.D. Introduction: In animals, atrial fibrillation results in reversible atrial electrical remodeling manifested as shortening of the atrial effective refractory period, slowing of intra-atrial conduction, and prolongation of sinus node recovery time. There is limited information on changes in these parameters after cardioversion in patients with persistent atrial fibrillation. Methods and Results: Thirty-eight patients who had been in atrial fibrillation for 1 to 12 months underwent electrophysiologic testing 10 minutes and 1 hour after cardioversion. At 1 week, 19 patients still in sinus rhythm returned for repeat testing. Reverse remodeling of the effective refractory period was not uniform across the three atrial sites tested. At the lateral right atrium, there was a highly significant increase in the effective refractory period between 10 minutes and 1 hour after cardioversion (drive cycle length 400 ms: 204 ± 17 ms vs 211 ± 20 ms, drive cycle length 550 ms: 213 ± 18 ms vs 219 ± 23 ms, P < 0.001). The effective refractory period at the coronary sinus and distal coronary sinus did not change in the first hour but had increased by 1 week. The corrected sinus node recovery time did not change in the first hour but was shorter at 1 week (606 ± 311 ms vs 408 ± 160 ms, P = 0.009). P wave duration also was shorter at 1 week (135 ± 18 ms vs 129 ± 13 ms, P = 0.04) consistent with increasing atrial conduction velocity. Conclusion: The atrial effective refractory period increases, sinus node function improves, and atrial conduction velocity goes up in the first week after cardioversion of long-standing atrial fibrillation in humans. Reverse electrical remodeling of the effective refractory period occurs at different rates in different regions of the atrium. (J Cardiovasc Electrophysiol, Vol. 15, pp. 507-512, May 2004) [source] The Comparative Effects of Drive and Test Stimulus Intensity on Myocardial Excitability and VulnerabilityPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 1 2000HOWARD S. FRIEDMAN The number and intensity of stimuli that set basic cycle length in cardiac electrophysiological studies can influence the electrical properties assessed by extrastimuli. The relative contribution of drive (S1) and test (S2) stimulus intensity in defining myocardial excitability and vulnerability has not been reported. The purpose of this investigation was to assess this interaction and to determine whether a trial and ventricular findings differed. The effects of S1 and S2 intensity on a trial and ventricular stimulus-intensity-refractory-period curves were determined in open-chest dogs: comparisons were made between curves with S1 intensity varied between diastolic threshold (DT) and 10 mA and S2 intensity maintained at DT and those with S, intensity maintained at DT and S2 intensity varied between DT and 10 mA. S1 -S2 was held constant and S1 -S2 varied. The effects of different stimulation sites, cycle length, number of stimulations, and neural blockade were assessed. S3 intensity amplification shifted atrial stimulus-intensity-refractory period curves in the direction of increased excitability and vulnerability; the changes were, more pronounced than those obtained by modulating S2 intensity. The changes produced by increasing S1 intensity were evident at different cycle lengths and were enhanced by an increased number of stimulations, but were not evident when S1 and S2 were delivered at different atrial sites. Although beta-blockade attenuated the effects of increasing S1 intensity somewhat, the addition of cholinergic blockade virtually abolished it. Ventricular refractoriness was also changed by modulation of S1 intensity, but the changes were less striking. In the atrium, modulation of S1 intensity has greater effects of stimulus-intensity-refractory-period relations than modulation ofS2 intensity; in the ventricle, the converse is true. [source] |