Home About us Contact | |||
Atrial Rate (atrial + rate)
Selected AbstractsTransthoracic Tissue Doppler Imaging of the Atria: A Novel Method to Determine the Atrial Fibrillation Cycle LengthJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 11 2006MATTIAS DUYTSCHAEVER M.D., Ph.D. Background: The atrial fibrillation cycle length (AFCL) is a critical parameter for the perpetuation and termination of AF. In the present study, we evaluated a new method to measure the AFCL based on transthoracic tissue Doppler imaging (TDI) of the right atrium (RA) and left atrium (LA). Methods: Twenty patients with AF (6 acute AF, 14 persistent or permanent AF) were studied. A quadripolar catheter was positioned at RA or LA to measure AFCL (AFCLEGM, gold standard). Transthoracic echocardiography (apical 4-chamber view) was used to perform pulsed wave TDI at the free wall of RA or LA. AFCLTDI was defined as the time interval between two consecutive positive to negative crossings of the baseline of the atrial time velocity curves. AFCLEGM and AFCLTDI were measured at baseline and during a 10-minute infusion of flecainide (1.5 mg/kg). Results: Measurement of AFCLTDI was feasible in all but one patient. At baseline, AFCLEGM was 170 ± 22 ms, AFCLTDI 172 ± 22 ms (difference 2 ± 5 ms). AFCLTDI correlated significantly with AFCLEGM (R = 0.91, P < 0.0001). Bland-Altman analysis showed a bias of ,2 ms with a 95% limit of agreement between ,26 ms and +22 ms. During flecainide, the AFCLTDI method yielded an AFCL prolongation from 176 ± 23 ms at baseline to 279 ± 68 ms (P < 0.01) after 10 minutes of infusion (57 ± 26%). Conclusions: (1) Tissue Doppler imaging of the atria during transthoracic echocardiography can be used to reliably determine the AFCL during both acute and persistent or permanent AF. (2) Continuous measurement of AFCL with TDI can be used to monitor the effect of antiarrhythmic drugs on atrial rate during AF. (3) This novel method is attractive because of the ease of acquiring the data and its noninvasive character. [source] Evaluation of Myocardial Performance with Conventional Single-Site Ventricular Pacing and Biventricular Pacing in a Canine Model of Atrioventricular BlockJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 9 2003PATRICIO A. FRIAS M.D. Introduction: The aim of this study was to evaluate epicardial biventricular pacing as a means of maintaining synchronous ventricular activation in an acute canine model of AV block with normal ventricular anatomy and function. Chronic single-site ventricular pacing results in dyssynchronous ventricular activation and may contribute to ventricular dysfunction. Biventricular pacing has been used successfully in adult patients with congestive heart failure. Methods and Results: This was an acute study of open chest mongrel dogs (n = 13). ECG, left ventricular (LV), aortic, and pulmonary arterial pressures were measured. LV impedance catheters were used to assess cardiodynamics using instantaneous LV pressure-volume relations (PVR). Following radiofrequency ablation of the AV node, a temporary pacemaker was programmed 10 beats/min above the intrinsic atrial rate, with an AV interval similar to the baseline intrinsic PR interval. The pacing protocol consisted of 5-minute intervals with the following lead configurations: right atrium-right ventricular apex (RA-RVA), RA-LV apex (LVA), and RA-biventricular using combinations of four ventricular sites (RVA, RV outflow tract [RVOT], LVA, LV base [LVB]). RA-RVA was used as the experimental control. LV systolic mechanics, as measured by the slope of the end-systolic (Ees) PVR (ESPVR, mmHg/cc), was statistically greater (P < 0.05) with all modes of biventricular pacing (RA-RVA/LVA 20.0 ± 2.9, RA-RVA/LVB 18.4 ± 2.9, RA-RVOT/LVA 15.1 ± 1.8, RA-RVOT/LVB 17.6 ± 2.9) compared to single-site ventricular pacing (RA-RVA 12.8 ± 1.6). Concurrent with this improvement in myocardial performance was a shortening of the QRS duration (RA-RVA 97.7 ± 2.9 vs RA-RVA/LVA 75.7 ± 4.9, RA-RVA/LVB 70.3 ± 4.9, RA-RVOT/LVA 65.3 ± 4.4, and RA-RVOT/LVB 76.7 ± 5.9, P < 0.05). Conclusion: In this acute canine model of AV block, QRS duration shortened and LV performance improved with epicardial biventricular pacing compared to standard single-site ventricular pacing. (J Cardiovasc Electrophysiol, Vol. 14, pp. 996-1000, September 2003) [source] Electrical Remodeling and Atrial Dilation During Atrial Tachycardia are Influenced by Ventricular Rate: Role of Developing TachycardiomyopathyJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 12 2001BAS A. SCHOONDERWOERD M.D. Atrial Remodeling in Tachycardiomyopathy. Introduction: Atrial fibrillation (AF) and congestive heart failure (CHF) are two clinical entities that often coincide. Our aim was to establish the influence of concomitant high ventricular rate and consequent development of CHF on electrical remodeling and dilation during atrial tachycardia. Methods and Results: A total of 14 goats was studied. Five goats were subjected to 3:1 AV pacing (A-paced group, atrial rate 240 beats/min, ventricular rate 80 beats/min). Nine goats were subjected to rapid 1:1 AV pacing (AV-paced group, atrial and ventricular rates 240 beats/min). During 4 weeks, right atrial (RA) and left ventricular (LV) diameters were measured during sinus rhythm. Atrial effective refractory periods (AERP) and inducibility of AF were assessed at three basic cycle lengths (BCL). After 4 weeks of rapid AV pacing, RA and LV diameters had increased to 151% and 113% of baseline, whereas after rapid atrial pacing alone, these parameters were unchanged. Right AERP (157 ± 10 msec vs 144 ± 16 msec at baseline with BCL of 400 msec in the A-paced and AV-paced group, respectively) initially decreased in both groups, reaching minimum values within 1 week. Subsequently, AERP partially recovered in AV-paced goats, whereas AERP remained short in A-paced goats (79 ± 7 msec vs 102 ± 12 msec after 4 weeks; P < 0.05). Left AERP demonstrated a similar time course. Inducibility of AF increased in both groups and reached a maximum during the first week in both groups, being 20% and 48% in the A-paced and AV-paced group, respectively. Conclusion: Nature and time course of atrial electrical remodeling and dilation during atrial tachycardia are influenced by concurrent high ventricular rate and consequent development of CHF. [source] Automatic Mode Switching of Implantable Pacemakers: I. Principles of Instrumentation, Clinical, and Hemodynamic ConsiderationsPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 6 2002CHU-PAK LAU LAU, C.-P., et al.: Automatic Mode Switching of Implantable Pacemakers: I. Principles of Instrumentation, Clinical, and Hemodynamic Considerations. Automatic mode switching (AMS) is now a programmable function in most contemporary dual chamber pacemakers. Atrial tachyarrhythmias are detected when the sensed atrial rate exceeds a "rate-cutoff,""running average,""sensor-based physiological" rate, or using "complex" detection algorithms. AMS algorithms differ in their atrial tachyarrhythmia detection method, sensitivity, and specificity and, thus, respond differently to atrial tachyarrhythmia in terms of speed to the AMS onset, rate stability of the response, and speed to resynchronize to sinus rhythm. AMS is hemodynamically beneficial, and most patients with atrial tachyarrhythmias are symptomatically better with an AMS algorithm in their pacemakers. New diagnostic capabilities of pacemaker especially stored electrograms not only allow programming of the AMS function, but enable quantification of atrial fibrillation burden that facilitate clinical management of patients with implantable devices who have concomitant atrial tachyarrhythmia. [source] Electrophysiologicai Characteristics of the Atrium in Sinus Node Dysfunction With and Without Postpacing Atrial FihriliationPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 3 2000ANTONIO DE SISTI DE SISTI, A., ET AL.: Electrophysiologicai Characteristics of the Atrium in Sinus Node Dysfunction With and Without Postpacing Atrial Fibrillation . In patients with sinus node dysfunction (SND) with or without associated paroxysmal atrial fibrillation (AF), the effectiveness of atrial pacing in reducing the incidence of AF is not definitive. In addition, despite several studies involving large populations of implanted patients, little attention has been paid to the electrophysioiogicai (EP) atrial substrate and the effect of permanent atrial pacing. The aim of this study is to correlate EP data and the risk of AF after DDD device implantation. We reviewed FP data of 38 consecutive patients with SND. mean age 70 ± 8 years, who were investigated free of antiarrhythmic treatment, for the evaluation of the atrial substrate. We also considered as control group 25 subjects, mean age 63 ± 14 years, referred to our EP laboratory for unexplained syncope or various atrioventricular disturbances. Following pharmacological washout and at a drive cycle length of 600 ms. effective and functional refractory periods (ERP, FRP), Sl-Al and S2-A2 latency, Al and A2 conduction duration, and latent vulnerability index (EHP/A2) were measured. AF induction was tested with up to three extrastimuli at paced cycle lengths of 600 and 400 ms in 20 patients. Induction of sustained AF (> 30 seconds) was considered as the endpoint. P wave duration on the surface ECG in lead II/Vl was also measured. DDD pacing mode was chosen in all patients with the minimal atrial rate programmed between 60 and 75 beats/min (mean 64 ± 4 beats/min). After implantation, the patients were followed-up for 29 ± 17 months and clinically documented occurrence of AF was determined. When comparing patients with SND and subjects of the control group, we did not find any significant statistical differences in terms of ERP (237 ± 33 vs 250 ± 29 ms), FRP (276 ± 30 vs 280 ± 32 ms) and Sl-Al (39 ± 16 vs 33 ± 11 ms) and S2-A2 latency (69 ± 24 vs 63 ± 25 ms). In contrast, we observed significant differences regarding Al (55 ± 19 vs 39 ± 13 ms; P < 0.001), A2 (95 ± 34 vs 57 ± 18 ms; P < 0.001) and P wave duration (104 ± 18 vs 94 ± 15 ms; P < 0.05), and ERP/A2 (2.8 ± 1.2 vs 4.8 ± 1.6; P < 0.001). When comparing patients with (n = 11) or without (n =27) postpacing AF occurrence, we did not find any difference with reference to ERP, FRP. Sl-Al, S2-A2, Al duration, or follow-up duration. In patients with postpacing AF occurrence, A2 was longer (116 ± 41 vs 87 ± 27 ms; P < 0.01), FRP/A2 lower (2.1 ± 0.4 vs 3.1 ± 1.4; P < 0.05), P wave more prolonged (116 ± 22 vs 99 ± 14 ms; P < 0.01), and preexisting AF history predominant (6/11 vs 5/27 patients; P < 0.05). No difference was observed between patients with (n = 8) and without (n = 12) AF induction during the EP study. In patients with SND, the atrial refractoriness appears normal and the most important abnormality concerns conduction slowing disturbances. Persistence of AF despite pacing stresses the importance of mechanisms responsible for AF not entirely brady-dependent. In this setting, more prolonged atrial conduction disturbances, responsible for a low vulnerability index, and a preexisting history of AF enable us to identify a high risk patient group for AF in the follow-up. sinus node dysfunction, atrial fibrillation, electrophysiologicai study, atrial pacing [source] |