Home About us Contact | |||
Atrial Myocytes (atrial + myocyte)
Selected AbstractsAcute atrial arrhythmogenesis in murine hearts following enhanced extracellular Ca2+ entry depends on intracellular Ca2+ storesACTA PHYSIOLOGICA, Issue 2 2010Y. Zhang Abstract Aim:, To investigate the effect of increases in extracellular Ca2+ entry produced by the L-type Ca2+ channel agonist FPL-64176 (FPL) upon acute atrial arrhythmogenesis in intact Langendorff-perfused mouse hearts and its dependence upon diastolic Ca2+ release from sarcoplasmic reticular Ca2+ stores. Methods:, Confocal microscope studies of Fluo-3 fluorescence in isolated atrial myocytes were performed in parallel with electrophysiological examination of Langendorff-perfused mouse hearts. Results:, Atrial myocytes stimulated at 1 Hz and exposed to FPL (0.1 ,m) initially showed (<10 min) frequent, often multiple, diastolic peaks following the evoked Ca2+ transients whose amplitudes remained close to control values. With continued pacing (>10 min) this reverted to a regular pattern of evoked transients with increased amplitudes but in which diastolic peaks were absent. Higher FPL concentrations (1.0 ,m) produced sustained and irregular patterns of cytosolic Ca2+ activity, independent of pacing. Nifedipine (0.5 ,m), and caffeine (1.0 mm) and cyclopiazonic acid (CPA) (0.15 ,m) pre-treatments respectively produced immediate and gradual reductions in the F/F0 peaks. Such nifedipine and caffeine, or CPA pre-treatments, abolished, or reduced, the effects of 0.1 and 1.0 ,m FPL on cytosolic Ca2+ signals. FPL (1.0 ,m) increased the incidence of atrial tachycardia and fibrillation in intact Langendorff-perfused hearts without altering atrial effective refractory periods. These effects were inhibited by nifedipine and caffeine, and reduced by CPA. Conclusion:, Enhanced extracellular Ca2+ entry exerts acute atrial arrhythmogenic effects that is nevertheless dependent upon diastolic Ca2+ release. These findings complement reports that associate established, chronic, atrial arrhythmogenesis with decreased overall inward Ca2+ current. [source] Laminin acts via focal adhesion kinase/phosphatidylinositol-3, kinase/protein kinase B to down-regulate ,1 -adrenergic receptor signalling in cat atrial myocytesTHE JOURNAL OF PHYSIOLOGY, Issue 3 2009Y. G. Wang We previously reported that short-term (2 h) plating of cat atrial myocytes on the extracellular matrix protein, laminin (LMN) decreases adenylate cyclase activity and ,1 -adrenergic receptor (,1 -AR) stimulation of L-type Ca2+ current (ICa,L). The present study sought to determine whether LMN-mediated down-regulation of ,1 signalling is due to down-regulation of adenylate cyclase and to gain insight into the signalling mechanisms responsible. ,1 -AR stimulation was achieved by 0.01 ,m isoproterenol (isoprenaline) plus 0.1 ,m ICI 118551, a selective ,2 -AR antagonist. Atrial myocytes were plated for at least 2 h on uncoated cover-slips (,LMN) or cover-slips coated with LMN (+LMN). As previously reported, ,1 -AR stimulation of ICa,L was significantly smaller in +LMN compared to ,LMN atrial myocytes. In ,LMN myocytes, 10 ,m LY294002 (LY), a specific inhibitor of PI-(3)K, had no effect on ,1 -AR stimulation of ICa,L. In +LMN myocytes, however, LY significantly increased ,1 -AR stimulation of ICa,L. Western blots revealed that compared with ,LMN myocytes, +LMN myocytes showed a significant increase in Akt phosphorylation at Ser-473, which was prevented by LY. In another approach, +LMN myocytes were infected (multiplicity of infection (MOI), 100; 24 h) with replication-defective adenoviruses (Adv) expressing dominant-negative inhibitors of focal adhesion kinase (FAK) (Adv-FRNK or Adv-Y397F-FAK) or Akt (Adv-dnAkt). Compared with control cells infected with Adv-,-galactosidase, cells infected with Adv-FRNK, Adv-Y397F-FAK or Adv-dnAkt each exhibited a significantly greater ,1 -AR stimulation of ICa,L. In ,LMN myocytes LY had no effect on forskolin (FSK)-stimulated ICa,L. However, in +LMN myocytes LY significantly increased FSK-stimulated ICa,L. Similar results were obtained in +LMN atrial myocytes infected with Adv-FRNK. We conclude that LMN binding to ,1 -integrin receptors acts via FAK/PI-(3)K/Akt to inhibit adenylate cyclase activity and thereby down-regulates ,1 -AR-mediated stimulation of ICa,L. These findings provide new insight into the cellular mechanisms by which the extracellular matrix can modulate atrial ,-AR signalling. [source] Acute atrial arrhythmogenesis in murine hearts following enhanced extracellular Ca2+ entry depends on intracellular Ca2+ storesACTA PHYSIOLOGICA, Issue 2 2010Y. Zhang Abstract Aim:, To investigate the effect of increases in extracellular Ca2+ entry produced by the L-type Ca2+ channel agonist FPL-64176 (FPL) upon acute atrial arrhythmogenesis in intact Langendorff-perfused mouse hearts and its dependence upon diastolic Ca2+ release from sarcoplasmic reticular Ca2+ stores. Methods:, Confocal microscope studies of Fluo-3 fluorescence in isolated atrial myocytes were performed in parallel with electrophysiological examination of Langendorff-perfused mouse hearts. Results:, Atrial myocytes stimulated at 1 Hz and exposed to FPL (0.1 ,m) initially showed (<10 min) frequent, often multiple, diastolic peaks following the evoked Ca2+ transients whose amplitudes remained close to control values. With continued pacing (>10 min) this reverted to a regular pattern of evoked transients with increased amplitudes but in which diastolic peaks were absent. Higher FPL concentrations (1.0 ,m) produced sustained and irregular patterns of cytosolic Ca2+ activity, independent of pacing. Nifedipine (0.5 ,m), and caffeine (1.0 mm) and cyclopiazonic acid (CPA) (0.15 ,m) pre-treatments respectively produced immediate and gradual reductions in the F/F0 peaks. Such nifedipine and caffeine, or CPA pre-treatments, abolished, or reduced, the effects of 0.1 and 1.0 ,m FPL on cytosolic Ca2+ signals. FPL (1.0 ,m) increased the incidence of atrial tachycardia and fibrillation in intact Langendorff-perfused hearts without altering atrial effective refractory periods. These effects were inhibited by nifedipine and caffeine, and reduced by CPA. Conclusion:, Enhanced extracellular Ca2+ entry exerts acute atrial arrhythmogenic effects that is nevertheless dependent upon diastolic Ca2+ release. These findings complement reports that associate established, chronic, atrial arrhythmogenesis with decreased overall inward Ca2+ current. [source] Contribution of Kir3.1, Kir3.2A and Kir3.2C subunits to native G protein-gated inwardly rectifying potassium currents in cultured hippocampal neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2003Joanne L. Leaney Abstract G protein-gated inwardly rectifying potassium (GIRK) channels are found in neurons, atrial myocytes and neuroendocrine cells. A characteristic feature is their activation by stimulation of Gi/o -coupled receptors. In central neurons, for example, they are activated by adenosine and GABA and, as such, they play an important role in neurotransmitter-mediated regulation of membrane excitability. The channels are tetrameric assemblies of Kir3.x subunits (Kir3.1,3.4 plus splice variants). In this study I have attempted to identify the channel subunits which contribute to the native GIRK current recorded from primary cultured rat hippocampal pyramidal neurons. Reverse transcriptase,polymerase chain reaction revealed the expression of mRNA for Kir3.1, 3.2A, 3.2C and 3.3 subunits and confocal immunofluorescence microscopy was used to investigate their expression patterns. Diffuse staining was observed on both cell somata and dendrites for Kir3.1 and Kir3.2A yet that for Kir3.2C was weaker and punctate. Whole-cell patch clamp recordings were used to record GIRK currents from hippocampal pyramidal neurons which were identified on the basis of inward rectification, dependence of reversal potential on external potassium concentration and sensitivity to tertiapin. The GIRK currents were enhanced by the stimulation of a number of Gi/o -coupled receptors and were inhibited by pertussis toxin. In order to ascertain which Kir3.x subunits were responsible for the native GIRK current I compared the properties with those of the cloned Kir3.1 + 3.2A and Kir3.1 + 3.2C channels heterologously expressed in HEK293 cells. [source] Cyamemazine metabolites: effects on human cardiac ion channels in-vitro and on the QTc interval in guinea pigsJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 11 2008William Crumb Monodesmethyl cyamemazine and cyamemazine sulfoxide, the two main metabolites of the antipsychotic and anxiolytic phenothiazine cyamemazine, were investigated for their effects on the human ether-à-go-go related gene (hERG) channel expressed in HEK 293 cells and on native INa, ICa, Ito, Isus or IK1 of human atrial myocytes. Additionally, cyamemazine metabolites were compared with terfenadine for their effects on the QT interval in anaesthetized guinea pigs. Monodesmethyl cyamemazine and cyamemazine sulfoxide reduced hERG current amplitude, with IC50 values of 0.70 and 1.53 ,M, respectively. By contrast, at a concentration of 1 ,M, cyamemazine metabolites failed to significantly affect INa, Ito, Isus or IK1 current amplitudes. Cyamemazine sulfoxide had no effect on ICa at 1 ,M, while at this concentration, monodesmethyl cyamemazine only slightly (17%), albeit significantly, inhibited ICa current. Finally, cyamemazine metabolites (5 mg kg,1 i.v.) were unable to significantly prolong QTc values in the guinea pig. Conversely, terfenadine (5 mg kg,1 i.v.) significantly increased QTc values. In conclusion, cyamemazine metabolite concentrations required to inhibit hERG current substantially exceed those necessary to achieve therapeutic activity of the parent compound in humans. Moreover, cyamemazine metabolites, in contrast to terfenadine, do not delay cardiac repolarization in the anaesthetized guinea pig. These non-clinical findings explain the excellent cardiac safety records of cyamemazine during its 30 years of extensive therapeutic use. [source] Electrophysiological Remodeling in Human Atrial FibrillationPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 7p2 2003DAVID R. VAN WAGONER Atrial fibrillation (AF) is a progressive disease characterized by cumulative electrophysiological and structural remodeling of the atria. Cellular electrophysiological studies have revealed marked reductions in the densities of the L-type voltage-gated Ca2+ current, ICa,L, the transient outward K+ current, ITO, and the ultra-rapid delayed rectifier K+ current, IKur, in atrial myocytes from patients in persistent or permanent AF. The density of the muscarinic K+ current (IKACh) is also reduced, however the inward rectifier K+ current (IK1) density is increased. The net shortening or lengthening of the action potential is dependent on the balance between changes in inward and outward currents. The prominent reduction in ICa,L appears to be sufficient to explain the observed decreases in action potential duration and effective refractory period that are characteristic of the fibrillating atria. Earlier studies have shown that calcium overload and perturbations in calcium handling play prominent roles in AF induced atrial remodeling. More recently, we have shown that AF is associated with evidence of oxidative injury to atrial tissue, and suggested that oxidative stress may directly contribute to the pathophysiology of AF. It is anticipated that insights gleaned from mechanistic studies will facilitate the development of improved pharmacological approaches to treat AF and to prevent the progression of arrhythmia. (PACE 2003; 26[Pt. II]:1572,1575) [source] Laminin acts via focal adhesion kinase/phosphatidylinositol-3, kinase/protein kinase B to down-regulate ,1 -adrenergic receptor signalling in cat atrial myocytesTHE JOURNAL OF PHYSIOLOGY, Issue 3 2009Y. G. Wang We previously reported that short-term (2 h) plating of cat atrial myocytes on the extracellular matrix protein, laminin (LMN) decreases adenylate cyclase activity and ,1 -adrenergic receptor (,1 -AR) stimulation of L-type Ca2+ current (ICa,L). The present study sought to determine whether LMN-mediated down-regulation of ,1 signalling is due to down-regulation of adenylate cyclase and to gain insight into the signalling mechanisms responsible. ,1 -AR stimulation was achieved by 0.01 ,m isoproterenol (isoprenaline) plus 0.1 ,m ICI 118551, a selective ,2 -AR antagonist. Atrial myocytes were plated for at least 2 h on uncoated cover-slips (,LMN) or cover-slips coated with LMN (+LMN). As previously reported, ,1 -AR stimulation of ICa,L was significantly smaller in +LMN compared to ,LMN atrial myocytes. In ,LMN myocytes, 10 ,m LY294002 (LY), a specific inhibitor of PI-(3)K, had no effect on ,1 -AR stimulation of ICa,L. In +LMN myocytes, however, LY significantly increased ,1 -AR stimulation of ICa,L. Western blots revealed that compared with ,LMN myocytes, +LMN myocytes showed a significant increase in Akt phosphorylation at Ser-473, which was prevented by LY. In another approach, +LMN myocytes were infected (multiplicity of infection (MOI), 100; 24 h) with replication-defective adenoviruses (Adv) expressing dominant-negative inhibitors of focal adhesion kinase (FAK) (Adv-FRNK or Adv-Y397F-FAK) or Akt (Adv-dnAkt). Compared with control cells infected with Adv-,-galactosidase, cells infected with Adv-FRNK, Adv-Y397F-FAK or Adv-dnAkt each exhibited a significantly greater ,1 -AR stimulation of ICa,L. In ,LMN myocytes LY had no effect on forskolin (FSK)-stimulated ICa,L. However, in +LMN myocytes LY significantly increased FSK-stimulated ICa,L. Similar results were obtained in +LMN atrial myocytes infected with Adv-FRNK. We conclude that LMN binding to ,1 -integrin receptors acts via FAK/PI-(3)K/Akt to inhibit adenylate cyclase activity and thereby down-regulates ,1 -AR-mediated stimulation of ICa,L. These findings provide new insight into the cellular mechanisms by which the extracellular matrix can modulate atrial ,-AR signalling. [source] Temperature-sensitive TREK currents contribute to setting the resting membrane potential in embryonic atrial myocytesTHE JOURNAL OF PHYSIOLOGY, Issue 15 2008Hengtao Zhang TREK channels belong to the superfamily of two-pore-domain K+ channels and are activated by membrane stretch, arachidonic acid, volatile anaesthetics and heat. TREK-1 is highly expressed in the atrium of the adult heart. In this study, we investigated the role of TREK-1 and TREK-2 channels in regulating the resting membrane potential (RMP) of isolated chicken embryonic cardiac myocytes. At room temperature, the average RMP of embryonic day (ED) 11 atrial myocytes was ,22 ± 2 mV. Raising the temperature to 35°C hyperpolarized the membrane to ,69 ± 2 mV and activated a large outwardly rectifying K+ current that was relatively insensitive to conventional K+ channel inhibitors (TEA, 4-AP and Ba2+) but completely inhibited by tetracaine (200 ,m), an inhibitor of TREK channels. The heat-induced hyperpolarization was mimicked by 10 ,m arachidonic acid, an agonist of TREK channels. There was little or no inwardly rectifying K+ current (IK1) in the ED11 atrial cells. In marked contrast, ED11 ventricular myocytes exhibited a normal RMP (,86.1 ± 3.4 mV) and substantial IK1, but no temperature- or tetracaine-sensitive K+ currents. Both RT-PCR and real-time PCR further demonstrated that TREK-1 and TREK-2 are highly and almost equally expressed in ED11 atrium but much less expressed in ED11 ventricle. In addition, immunofluorescence demonstrated TREK-1 protein in the membrane of atrial myocytes. These data indicate the presence and function of TREK-1 and TREK-2 in the embryonic atrium. Moreover, we demonstrate that TREK-like currents have an essential role in determining membrane potential in embryonic atrial myocytes, where IK1 is absent. [source] Homomers of Kir.3.4 in atrial myocytes: their relevance to atrial fibrillationTHE JOURNAL OF PHYSIOLOGY, Issue 1 2007P. R. Stanfield No abstract is available for this article. [source] Modulation of Ca2+ signalling in rat atrial myocytes: possible role of the ,1c carboxyl terminalTHE JOURNAL OF PHYSIOLOGY, Issue 2 2003Sun-Hee Woo Ca2+ influx through L-type Cav1.2 (,1c) Ca2+ channels is a critical step in the activation of cardiac ryanodine receptors (RyRs) and release of Ca2+ via Ca2+ -induced Ca2+ release(CICR). The released Ca2+, in turn, is the dominant determinant of inactivation of the Ca2+ current (ICa) and termination of release. Although Ca2+ cross-signalling is mediated by high Ca2+ fluxes in the microdomains of ,1c -RyR complexes, ICa -gated Ca2+ cross-signalling is surprisingly resistant to intracellular Ca2+ buffering and has steeply voltage-dependent gain, inconsistent with a strict CICR mechanism, suggesting the existence of additional regulatory step(s). To explore the possible regulatory role of the carboxyl (C)-terminal tail of ,1c in modulating Ca2+ signalling, we tested the effects of introducing two ,1c C-terminal peptides, LA (1571,1599) and K (1617,1636) on the central ,1c -unassociated Ca2+ -release sites of atrial myocytes, using rapid (240 Hz) two-dimensional confocal Ca2+ imaging. The frequency of spontaneously activating central sparks increased by approximately fourfold on dialysing LA- but not K-peptide into myocytes voltage-clamped at -80 mV. The rate but not the magnitude of caffeine (10 mM)-triggered central Ca2+ release was significantly accelerated by LA- but not K-peptide. Individual Ca2+ spark size and flux were larger in LA- but not in K-peptide-dialysed myocytes. Although LA-peptide did not change the amplitude or inactivation kinetics of ICa, LA-peptide did strongly enhance the central Ca2+ transients triggered by ICa at -30 mV (small ICa) but not at +20 mV (large ICa). In contrast, K-peptide had no effect on either ICa or the local Ca2+ transients. LA-peptide with a deleted calmodulin-binding region (LM1-peptide) had no significant effects on the central spark frequency but suppressed spontaneous spark frequency in the periphery. Our results indicate that the calmodulin-binding LA motif of the ,1c C-terminal tail may sensitize the RyRs, thereby increasing their open probability and providing for both the voltage-dependence of CICR and the higher frequency of spark occurrence in the periphery of atrial myocytes where the native ,1c -RyR complexes are intact. [source] Regulation of junctional and non-junctional sarcoplasmic reticulum calcium release in excitation-contraction coupling in cat atrial myocytesTHE JOURNAL OF PHYSIOLOGY, Issue 1 2003Katherine A. Sheehan We have characterized the dependence on membrane potential (Vm) and calcium current (ICa) of calcium-induced calcium release (CICR) from the junctional-SR (j-SR, in the subsarcolemmal (SS) space) and non-junctional-SR (nj-SR, in the central (CT) region of the cell) of cat atrial myocytes using whole-cell voltage-clamp together with spatially resolved laser-scanning confocal microscopy. Subsarcolemmal and central [Ca2+]i transient amplitudes and ICa had a bell-shaped dependence on Vm, but [Ca2+]i reached a maximum at more negative Vm (-10 to 0 mV) than ICa (+10 mV). Termination of ICa after a brief depolarization (2.5 to 22.5 ms) immediately interrupted only the SS [Ca2+]i transient, leaving the development of the CT [Ca2+]i transient unaffected. Block of SR function with 20 ,m ryanodine and 2 ,m thapsigargin, revealed that > 90 % of the control [Ca2+]i transient amplitude was attributable to active SR Ca2+ release through ryanodine receptors (RyRs). The gain of SR Ca2+ release was highest in the SS space at negative test potentials and was less pronounced in the CT region. Inhibition of Na+ -Ca2+ exchange resulted in prolonged and higher amplitude [Ca2+]i transients, elevated resting [Ca2+]i, accelerated propagation of CICR, decreased extrusion of Ca2+ and an increase in j-SR Ca2+ load. Increasing the cytosolic Ca2+ buffer capacity by internal perfusion with 1 mm EGTA limited SR Ca2+ release to the SS region, indicating that Ca2+ release from nj-SR is initiated by diffusion of Ca2+ from the cell periphery and propagating CICR. Junctional-SR Ca2+ release occurred at discrete sites whose order of activation and amplitude of release varied from beat to beat. In conclusion, during normal excitation-contraction coupling in cat atrial myocytes, only Ca2+ release from the j-SR is directly activated by Ca2+ entering via ICa. Elevation of SS [Ca2+]i is required to provide the cytosolic Ca2+ gradient needed to initiate regenerative and propagating CICR from nj-SR. [source] Functional expression of the hyperpolarization-activated, non-selective cation current If in immortalized HL-1 cardiomyocytesTHE JOURNAL OF PHYSIOLOGY, Issue 1 2002Laura Sartiani HL-1 cells are adult mouse atrial myocytes induced to proliferate indefinitely by SV40 large T antigen. These cells beat spontaneously when confluent and express several adult cardiac cell markers including the outward delayed rectifier K+ channel. Here, we examined the presence of a hyperpolarization-activated If current in HL-1 cells using the whole-cell patch-clamp technique on isolated cells enzymatically dissociated from the culture at confluence. Cell membrane capacitance (Cm) ranged from 5 to 53 pF. If was detected in about 30 % of the cells and its occurrence was independent of the stage of the culture. If maximal slope conductance was 89.7 ± 0.4 pS pF,1 (n= 10). If current in HL-1 cells showed typical characteristics of native cardiac If current: activation threshold between ,50 and ,60 mV, half-maximal activation potential of ,83.1 ± 0.7 mV (n= 50), reversal potential at ,20.8 ± 1.5 mV (n= 10), time-dependent activation by hyperpolarization and blockade by 4 mm Cs+. In half of the cells tested, activation of adenylyl cyclase by the forskolin analogue L858051 (20 ,m) induced both a ,6 mV positive shift of the half-activation potential and a ,37 % increase in the fully activated If current. RT-PCR analysis of the hyperpolarization-activated, cyclic nucleotide-gated channels (HCN) expressed in HL-1 cells demonstrated major contributions of HCN1 and HCN2 channel isoforms to If current. Cytosolic Ca2+ oscillations in spontaneously beating HL-1 cells were measured in Fluo-3 AM-loaded cells using a fast-scanning confocal microscope. The oscillation frequency ranged from 1.3 to 5 Hz and the spontaneous activity was stopped in the presence of 4 mm Cs+. Action potentials from HL-1 cells had a triangular shape, with an overshoot at +15 mV and a maximal diastolic potential of ,69 mV, i.e. more negative than the threshold potential for If activation. In conclusion, HL-1 cells display a hyperpolarization-activated If current which might contribute to the spontaneous contractile activity of these cells. [source] Electrophysiological effects of 5-hydroxytryptamine on isolated human atrial myocytes, and the influence of chronic , -adrenoceptor blockadeBRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2003Davide Pau 5-Hydroxytryptamine (5-HT) has been postulated to play a proarrhythmic role in the human atria via stimulation of 5-HT4 receptors. The aims of this study were to examine the effects of 5-HT on the L-type Ca2+ current (ICaL) action potential duration (APD), the effective refractory period (ERP) and arrhythmic activity in human atrial cells, and to assess the effects of prior treatment with , -adrenoceptor antagonists. Isolated myocytes, from the right atrial appendage of 27 consenting patients undergoing cardiac surgery who were in sinus rhythm, were studied using the whole-cell perforated patch-clamp technique at 37°C. 5-HT (1 nM,10 ,M) caused a concentration-dependent increase in ICaL, which was potentiated in cells from , -blocked (maximum response to 5-HT, Emax=299±12% increase above control) compared to non- , -blocked patients (Emax=220±6%, P<0.05), but with no change in either the potency (log EC50: ,7.09±0.07 vs ,7.26±0.06) or Hill coefficient (nH: 1.5±0.6 vs 1.5±0.3) of the 5-HT concentration,response curve. 5-HT (10 ,M) produced a greater increase in the APD at 50% repolarisation (APD50) in cells from , -blocked patients (of 37±10 ms, i.e. 589±197%) vs non- , -blocked patients (of 10±4 ms, i.e. 157±54%; P<0.05). Both the APD90 and the ERP were unaffected by 5-HT. Arrhythmic activity was observed in response to 5-HT in five of 17 cells (29%) studied from , -blocked, compared to zero of 16 cells from the non- , -blocked patients (P<0.05). In summary, the 5-HT-induced increase in calcium current was associated with a prolonged early plateau phase of repolarisation, but not late repolarisation or refractoriness, and the enhancement of these effects by chronic , -adrenoceptor blockade was associated with arrhythmic potential. British Journal of Pharmacology (2003) 140, 1434,1441. doi:10.1038/sj.bjp.0705553 [source] ELECTROPHYSIOLOGICAL EFFECTS OF KETAMINE ON HUMAN ATRIAL MYOCYTES AT THERAPEUTICALLY RELEVANT CONCENTRATIONSCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 12 2008Chun-Yu Deng SUMMARY 1Ketamine is widely used for the induction of anaesthesia in high-risk patients with cardiovascular instability or severe hypovolaemia. However, the ionic mechanisms involved in the effects of ketamine at therapeutically relevant concentrations in human cardiac myocytes are unclear. The present study was designed to investigate the effects of ketamine on L-type Ca2+ (ICa), transient outward K+ (Ito), ultra-rapid delayed rectifier K+ (IKur) and inward rectifier potassium (IK1) currents, as well as on action potentials, in human isolated atrial myocytes. 2Atrial myocytes were isolated enzymatically from specimens of human atrial appendage obtained from patients undergoing coronary artery bypass grafting. The action potential and membrane currents were recorded in both current- and voltage-clamp modes using the patch-clamp technique. 3Ketamine inhibited ICa with an IC50 of 1.8 µmol/L. In addition, 10 µmol/L ketamine decreased the ICa peak current at +10 mV from 5.1 ± 0.3 to 2.1 ± 0.4 pA/pF (P < 0.01), but did not change the threshold potential, peak current potential and reverse potential. 4Ketamine had no effect on Ito, IKur or IK1, but it reversibly shortened the duration of the action potential in human atrial myocytes. 5In conclusion, ketamine, at a clinically relevant concentration, shortens the action potential duration of the human atrial myocytes, probably by inhibiting ICa. [source] |