Atrial Effective Refractory Period (atrial + effective_refractory_period)

Distribution by Scientific Domains


Selected Abstracts


Alcohol Intake is Significantly Associated with Atrial Flutter in Patients under 60 Years of Age and a Shorter Right Atrial Effective Refractory Period

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 3 2008
GREGORY M. MARCUS M.D.
Background: Although evidence suggests that alcohol is associated with atrial fibrillation (AF), the association between alcohol and atrial flutter (AFL) has not been examined. The mechanism connecting alcohol and atrial arrhythmias is unknown. Methods: Alcohol intake was determined in 195 consecutive patients with AF and AFL. Control subjects included patients with other supraventricular arrhythmias (n = 132) and healthy subjects (n = 54). Because of important competing risk factors for atrial arrhythmias in the elderly, stratification by age was performed. In a subset, atrial effective refractory periods (AERPs) were obtained from the high right atrium and proximal and distal coronary sinus. Results: AF and AFL patients were significantly more likely to be daily alcohol drinkers (27% vs 14% of controls, P = 0.001). In multivariable analysis, AFL patients , 60 years of age were significantly more likely to be daily drinkers than to drink no alcohol compared to controls (odds ratio 17, 95% confidence interval 1.6,192.0, P = 0.019). Progressively more frequent alcohol intake was significantly associated with a progressively greater odds of AFL in patients , 60 years of age (P = 0.045). Neither AF subjects of any age nor AFL subjects > 60 years of age exhibited significant associations with alcohol after multivariable adjustment. Right AERPs shortened significantly with increasing amounts of alcohol intake (P = 0.025), whereas left AERPs were not associated with alcohol intake. Conclusions: Alcohol intake is positively associated with AFL in younger patients. The mechanism may be related to a shortening of the right AERP. [source]


Effect of Electrical and Structural Remodeling on Spatiotemporal Organization in Acute and Persistent Atrial Fibrillation

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 10 2002
JOSEPH G. AKAR M.D.
Spatiotemporal Organization in Atrial Fibrillation.Introduction: Atrial fibrillation (AF) may originate from discrete sites of periodic activity. We studied the effect of structural and electrical remodeling on spatiotemporal organization in acute and persistent AF. Methods and Results: Atrial effective refractory periods (AERPs) were recorded from five different sites at baseline and after pacing in acute AF (n = 8 dogs) and persistent AF (n = 8). Four persistent AF dogs subsequently were cardioverted to sinus rhythm to allow AERP recovery. Periodicity was quantified by calculating power spectra on left atrial electrograms obtained from a 64-electrode basket catheter. Left atrial size was measured by intracardiac echocardiography and structural changes were assessed by electron microscopy. Mean AERPs decreased after pacing in acute (128 ± 16 msec to 108 ± 29 msec, P < 0.001) and persistent AF (135 ± 16 msec to 104 ± 24 msec, P < 0.0001). AERP recovery was established after 7 days of sinus rhythm. Structural changes were mild in acute AF, severe in persistent AF, and remained severe after AERP recovery. A single dominant frequency was identified in 94% of acute AF bipoles, 57% in persistent AF, and 76% after AERP recovery. Average correlation coefficient was 0.82 among acute AF bipoles, 0.63 in persistent AF, and 0.73 after AERP recovery. Conclusion: Transition from acute to persistent AF is associated with loss of spatiotemporal organization. A single dominant frequency recruits the majority of the left atrium in acute AF. Persistent AF, however, is associated with structural remodeling and dominant frequency dispersion. Recovery of refractoriness only partially restores spatiotemporal organization, indicating a major role for structural remodeling in the maintenance of persistent AF. [source]


Electrical Remodeling and Atrial Dilation During Atrial Tachycardia are Influenced by Ventricular Rate: Role of Developing Tachycardiomyopathy

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 12 2001
BAS A. SCHOONDERWOERD M.D.
Atrial Remodeling in Tachycardiomyopathy. Introduction: Atrial fibrillation (AF) and congestive heart failure (CHF) are two clinical entities that often coincide. Our aim was to establish the influence of concomitant high ventricular rate and consequent development of CHF on electrical remodeling and dilation during atrial tachycardia. Methods and Results: A total of 14 goats was studied. Five goats were subjected to 3:1 AV pacing (A-paced group, atrial rate 240 beats/min, ventricular rate 80 beats/min). Nine goats were subjected to rapid 1:1 AV pacing (AV-paced group, atrial and ventricular rates 240 beats/min). During 4 weeks, right atrial (RA) and left ventricular (LV) diameters were measured during sinus rhythm. Atrial effective refractory periods (AERP) and inducibility of AF were assessed at three basic cycle lengths (BCL). After 4 weeks of rapid AV pacing, RA and LV diameters had increased to 151% and 113% of baseline, whereas after rapid atrial pacing alone, these parameters were unchanged. Right AERP (157 ± 10 msec vs 144 ± 16 msec at baseline with BCL of 400 msec in the A-paced and AV-paced group, respectively) initially decreased in both groups, reaching minimum values within 1 week. Subsequently, AERP partially recovered in AV-paced goats, whereas AERP remained short in A-paced goats (79 ± 7 msec vs 102 ± 12 msec after 4 weeks; P < 0.05). Left AERP demonstrated a similar time course. Inducibility of AF increased in both groups and reached a maximum during the first week in both groups, being 20% and 48% in the A-paced and AV-paced group, respectively. Conclusion: Nature and time course of atrial electrical remodeling and dilation during atrial tachycardia are influenced by concurrent high ventricular rate and consequent development of CHF. [source]


Age-Related Increase in Atrial Fibrillation Induced by Transvenous Catheter-Based Atrial Burst Pacing: An In Vivo Rat Model of Inducible Atrial Fibrillation

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 1 2010
DONGZHU XU M.D.
AF Rat Model Induced by Transvenous Catheter Pacing.,Introduction: Large animal models of atrial fibrillation (AF) are well established, but limited experimental reports exist on small animal models. We sought to develop an in vivo rat model of AF using a transvenous catheter and to evaluate the model's underlying characteristics. Methods and Results: Echocardiogram, surface electrocardiogram (ECG), and atrial effective refractory period (AERP) were recorded at baseline in young (3 months) and middle-aged (9 months) Wistar rats. AF inducibility and duration were measured through transvenous electrode catheter in young (n = 11) and middle-aged rats (n = 11) and middle-aged rats treated with either pilsicainide (1 mg/kg iv, n = 7) or amiodarone (10 mg/kg iv, n = 9). Degrees of interstitial fibrosis and cellular hypertrophy in the atria were assessed histologically. The P-wave duration and AERP were significantly longer and echocardiographic left atrial dimension significantly larger in middle-aged versus young rats. AF was inducible in >90% of all procedures in both untreated rat groups, whereas AF inducibility was reduced by the antiarrhythmic drugs. The AF duration was significantly longer in middle-aged than in young rats and was significantly shortened by treatment with either pilsicainide or amiodarone. Histologic analysis revealed significant increases in atrial interstitial fibrosis and cellular diameter in middle-aged versus young rats. Conclusions: Transvenous catheter-based AF is significantly longer in middle-aged than in young rats and is markedly reduced by treatment with antiarrhythmic drugs. This rat model of AF is simple, reproducible, and reliable for examining pharmacologic effects on AF and studying the process of atrial remodeling.(J Cardiovasc Electrophysiol, Vol. 21, pp. 88,93, January 2010) [source]


Ranolazine Exerts Potent Effects on Atrial Electrical Properties and Abbreviates Atrial Fibrillation Duration in the Intact Porcine Heart

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 7 2009
KAPIL KUMAR M.D.
Introduction: In vitro studies and ambulatory ECG recordings from the MERLIN TIMI-36 clinical trial suggest that the novel antianginal agent ranolazine may have the potential to suppress atrial arrhythmias. However, there are no reports of effects of ranolazine on atrial electrophysiologic properties in large intact animals. Methods and Results: In 12 closed-chest anesthetized pigs, effects of intravenous ranolazine (,9 ,M plasma concentration) on multisite atrial effective refractory period (ERP), conduction time (CT), and duration and inducibility of atrial fibrillation (AF) initiated by intrapericardial acetylcholine were investigated. Ranolazine increased ERP by a median of 45 ms (interquartile range 29,50 ms; P < 0.05, n = 6) in right and left atria compared to control at pacing cycle length (PCL) of 400 ms. However, ERP increased by only 28 (24,34) ms in right ventricle (P < 0.01, n = 6). Ranolazine increased atrial CT from 89 (71,109) ms to 98 (86,121) ms (P = 0.04, n = 6) at PCL of 400 ms. Ranolazine decreased AF duration from 894 (811,1220) seconds to 621 (549,761) seconds (P = 0.03, n = 6). AF was reinducible in 1 of 6 animals after termination with ranolazine compared with all 6 animals during control period (P = 0.07). Dominant frequency (DF) of AF was reduced by ranolazine in left atrium from 11.7 (10.7,20.5) Hz to 7.6 (2.9,8.8) Hz (P = 0.02, n = 6). Conclusions: Ranolazine, at therapeutic doses, increased atrial ERP to greater extent than ventricular ERP and prolonged atrial CT in a frequency-dependent manner in the porcine heart. AF duration and DF were also reduced by ranolazine. Potential role of ranolazine in AF management merits further investigation. [source]


Reversal of Electrical Remodeling After Cardioversion of Persistent Atrial Fibrillation

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 5 2004
MERRITT H. RAITT M.D.
Introduction: In animals, atrial fibrillation results in reversible atrial electrical remodeling manifested as shortening of the atrial effective refractory period, slowing of intra-atrial conduction, and prolongation of sinus node recovery time. There is limited information on changes in these parameters after cardioversion in patients with persistent atrial fibrillation. Methods and Results: Thirty-eight patients who had been in atrial fibrillation for 1 to 12 months underwent electrophysiologic testing 10 minutes and 1 hour after cardioversion. At 1 week, 19 patients still in sinus rhythm returned for repeat testing. Reverse remodeling of the effective refractory period was not uniform across the three atrial sites tested. At the lateral right atrium, there was a highly significant increase in the effective refractory period between 10 minutes and 1 hour after cardioversion (drive cycle length 400 ms: 204 ± 17 ms vs 211 ± 20 ms, drive cycle length 550 ms: 213 ± 18 ms vs 219 ± 23 ms, P < 0.001). The effective refractory period at the coronary sinus and distal coronary sinus did not change in the first hour but had increased by 1 week. The corrected sinus node recovery time did not change in the first hour but was shorter at 1 week (606 ± 311 ms vs 408 ± 160 ms, P = 0.009). P wave duration also was shorter at 1 week (135 ± 18 ms vs 129 ± 13 ms, P = 0.04) consistent with increasing atrial conduction velocity. Conclusion: The atrial effective refractory period increases, sinus node function improves, and atrial conduction velocity goes up in the first week after cardioversion of long-standing atrial fibrillation in humans. Reverse electrical remodeling of the effective refractory period occurs at different rates in different regions of the atrium. (J Cardiovasc Electrophysiol, Vol. 15, pp. 507-512, May 2004) [source]


Identification and Characterization of Atrioventricular Parasympathetic Innervation in Humans

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 8 2002
KARA J. QUAN M.D.
AV Parasympathetic Innervation.Introduction: We hypothesized that in humans there is an epicardial fat pad from which parasympathetic ganglia supply the AV node. We also hypothesized that the parasympathetic nerves innervating the AV node also innervate the right atrium, and the greatest density of innervation is near the AV nodal fat pad. Methods and Results: An epicardial fat pad near the junction of the left atrium and right inferior pulmonary vein was identified during cardiac surgery in seven patients. A ring electrode was used to stimulate this fat pad intraoperatively during sinus rhythm to produce transient complete heart block. Subsequently, temporary epicardial wire electrodes were sutured in pairs on this epicardial fat pad, the high right atrium, and the right ventricle by direct visualization during coronary artery bypass surgery in seven patients. Experiments were performed in the electrophysiology laboratory 1 to 5 days after surgery. Programmed atrial stimulation was performed via an endocardial electrode catheter advanced to the right atrium. The catheter tip electrode was moved in 1-cm concentric zones around the epicardial wires by fluoroscopic guidance. Atrial refractoriness at each catheter site was determined in the presence and absence of parasympathetic nerve stimulation (via the epicardial wires). In all seven patients, an AV nodal fat pad was identified. Fat pad stimulation during and after surgery caused complete heart block but no change in sinus rate. Fat pad stimulation decreased the right atrial effective refractory period at 1 cm (280 ± 42 msec to 242 ± 39 msec) and 2 cm (235 ± 21 msec to 201 ± 11 msec) from the fat pad (P = 0.04, compared with baseline). No significant change in atrial refractoriness occurred at distances > 2 cm. The response to stimulation decreased as the distance from the fat pad increased. Conclusion: For the first time in humans, an epicardial fat pad was identified from which parasympathetic nerve fibers selectively innervate the AV node but not the sinoatrial node. Nerves in this fat pad also innervate the surrounding right atrium. [source]


Supervulnerable Phase Immediately After Termination of Atrial Fibrillation

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 3 2002
MATTIAS DUYTSCHAEVER M.D.
Supervulnerable Phase After Termination of AF.Introduction: Recent studies with the implantable atrial cardioverter have shown that atrial fibrillation (AF) recurs almost immediately after successful cardioversion in about 27% of cases. In the present study, we determined the electrophysiologic properties of the caprine atrium immediately after spontaneous termination of AF both before and after 48 hours of AF-induced electrical remodeling. Methods and Results: In eight goats, atrial effective refractory period (AERP), intra-atrial conduction velocity, and atrial wavelength were measured during sinus rhythm both before (t = 0) and after 48 hours (t = 48) of electrically maintained AF (baseline). After baseline, a 5-minute paroxysm of AF was induced, during which the refractory period (RPAF) was determined. AERP, conduction velocity, and atrial wavelength also were measured immediately after spontaneous restoration of sinus rhythm (post-AF values). Both in normal and remodeled atria, immediately after AF, AERP and conduction velocity were markedly decreased compared with baseline (P < 0.01). In normal atria, post-AF AERP (107 ± 14 msec) gradually prolonged from its AF value (114 ± 17 msec) to its baseline value (138 ± 13 msec). Conduction velocity decreased from 130 ± 9 cm/sec to 117 ± 9 cm/sec. After 48 hours of AF, AERP had shortened to 74 ± 8 msec. RPAF was 89 ± 9 msec. Surprisingly, immediately after termination of AF, AERP shortened further to 58 ± 6 msec (P < 0.01). Post-AF conduction velocity decreased from 136 ± 11 cm/sec to 122 ± 10 cm/sec (P < 0.01). As a result, the post-AF atrial wavelength became as short as 7.1 ± 1 cm. These changes were transient, and all parameters gradually returned to baseline within 1 to 2 minutes after conversion of AF. Conclusion: Due to a combined decrease in AERP and conduction velocity, marked shortening of the atrial wavelength occurs during the first minutes after conversion of AF. In electrically remodeled atria, this results in a transient ultrashort value of AERP (< 60 msec) and atrial wavelength (7.1 cm). These observations imply a highly vulnerable substrate for reentry immediately after termination of AF. During this supervulnerable phase, both early and later premature beats reinitiated immediate recurrences of AF. [source]


Atrial Fibrillation in the Goat Induces Changes in Monophasic Action Potential and mRNA Expression of Ion Channels Involved in Repolarization

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 11 2000
HUUB M.W. VAN DER VELDEN PH.D.
MAP Changes and Ion Channel Expression in Goat AF. Introduction: Sustained atrial fibrillation (AF) is characterized by a marked shortening of the atrial effective refractory period (AKRP) and a decrease or reversal of its physiolonic adaptation to heart rate. The aim of the present study was to investigate whether the AF-induced changes in AKKP in the goat are associated with changes in the atrial monophasic action potential (MAP) and whether an abnormal expression of specific ion channels underlies such changes. Methods and Results: Following thoracotomy, MAPs were recorded from the free wall of the right atrium hoth before induction of AF (control) and after cardioversion of sustained AF (>2 months) in chronically instrumented goats. In control goats. MAP duration at 80% repolarization (MAPD80) shortened (P < 0.01) from 132 ± 4 msec during slow pacing (400-msec interval) to 86 ± 10 msec during fast pacing (180 msec). After cardioversion of sustained AF, the MAPD80, during slow pacing was as short as 67 ± 5 msec (electrical remodeling). Increasing the pacing rate resulted in prolongation (P = 0.02) of the MAPD80 to 91 ± 6 msec. Also. MAPD20 (20% repolarization) shortened (P = 0.05) from 32 ± 4 msec (400 msec) to 14 ± 7 msec (180 msec) in the control goats, whereas it prolonged (P = 0.03) from 20 ± 3 msec (400 msec) to 33 ± 5 msec (180 msec) in sustained AF, mRNA expression of the L-type Ca2+ channel ,1c gene and Kv1.5 potassium channel gene, which underlie Ica, and Ikur respectively, was reduced in sustained.AF compared with sinus rhythm hy 32% (P = 0.01) and 45% (P < 0.01). respectively. No significant changes were found in the mRNA levels of the rapid Na+ channel, the Na+/Ca2+ exchanger, or the Kv4.2/4.3 channels responsible for I10. Conclusion: AF-induced electrical remodeling in the goat comprises shortening of MAPD and reversal of its physiologic rate adaptation. Changes in the time course of reploarization of the action potential are associated with changes in mRNA expression of the , subunit genes of the L.-type Ca2+ channel and the Kvl.5 potassium channel. [source]


Atrial, SA Nodal, and AV Nodal Electrophysiology in Standing Horses: Normal Findings and Electrophysiologic Effects of Quinidine and Diltiazem

JOURNAL OF VETERINARY INTERNAL MEDICINE, Issue 1 2007
Colin C. Schwarzwald
Background: Although atrial arrhythmias are clinically important in horses, atrial electrophysiology has been incompletely studied. Hypotheses: Standard electrophysiologic methods can be used to study drug effects in horses. Specifically, the effects of diltiazem on atrioventricular (AV) nodal conduction are rate-dependent and allow control of ventricular response rate during rapid atrial pacing in horses undergoing quinidine treatment. Animals: Fourteen healthy horses. Methods: Arterial blood pressure, surface electrocardiogram, and right atrial electrogram were recorded during sinus rhythm and during programmed electrical stimulation at baseline, after administration of quinidine gluconate (10 mg/kg IV over 30 minutes, n = 7; and 12 mg/kg IV over 5 minutes followed by 5 mg/kg/h constant rate infusion for the remaining duration of the study, n = 7), and after coadministration of diltiazem (0.125 mg/kg IV over 2 minutes repeated every 12 minutes to effect). Results: Quinidine significantly prolonged the atrial effective refractory period, shortened the functional refractory period (FRP) of the AV node, and increased the ventricular response rate during atrial pacing. Diltiazem increased the FRP, controlled ventricular rate in a rate-dependent manner, caused dose-dependent suppression of the sinoatrial node and produced a significant, but well tolerated decrease in blood pressure. Effective doses of diltiazem ranged from 0.125 to 1.125 mg/kg. Conclusions and Clinical Importance: Standard electrophysiologic techniques allow characterization of drug effects in standing horses. Diltiazem is effective for ventricular rate control in this pacing model of supraventricular tachycardia. The use of diltiazem for rate control in horses with atrial fibrillation merits further investigation. [source]


Effect of Different Pacing Protocols on the Induction of Atrial Fibrillation in a Transvenously Paced Sheep Model

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 6 2001
RIK WILLEMS
WILLEMS, R. et al.: Effect of Different Pacing Protocols on the Induction of Atrial Fibrillation in a Transvenously Paced Sheep Model. In different animal models rapid atrial stimulation led to a shortening and maladaptation to rate of the atrial effective refractory period (AERP). This atrial electrical remodeling resulted in an increased vulnerability to atrial fibrillation (AF). These experimental findings formed the rationale for a stringent pursuit of sinus rhythm in patients with AF, since this would prevent or reverse atrial remodeling. This study tested the hypothesis that a reduction of arrhythmia burden would lead to a decreased vulnerability for AF. Different rapid atrial pacing protocols in a sheep model were used. During 15 weeks, 13 animals were continuously rapid paced and 7 animals were intermittently burst-paced, resulting in rapid atrial activation during 100% versus 33 ± 4% of the time, respectively. In the continuously paced group, 77% of the animals developed sustained AF (i.e., >1 hour) versus only 29% in the burst-paced group (P < 0.05). However, there was no difference in mean AERP shortening over time, nor maximal AERP shortening per animal, between both protocols. Minimal AERP was 103 ± 5 ms in the continuously paced group and 107 ± 5 in the burst-paced group (P = NS). Significant changes could be identified in effect on P wave duration, AVN function, and atrial dilation. Conduction slowing was more pronounced in the continuously paced group with a maximal P wave duration of 136 ± 4 ms in this group versus 116 ± 5 in the burst-paced group (P < 0.05). In the continuously paced group, the right atrial area significantly increased from 2.5 ± 0.1 cm2 at baseline to 4.2 ± 0.2 cm2. In the burst-paced group there was no significant atrial dilatation (from 2.6 ± 0.1 to 2.8 ± 0.1 cm2). In conclusion, limiting atrial arrhythmia burden slowed the development of sustained AF in this sheep model. This was not mediated by a decreased influence on atrial refractoriness but seemed to be dependent on smaller changes in atrial conduction and dimensions. [source]


Atrial Fibrillation Induction and Determination of Atrial Vulnerable Period Using Very Low Energy Synchronized Biatrial Shock in Normal Subjects and in Patients with Atrial Fibrillation

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 4 2000
HUNG-FAT TSE
The atrial vulnerable periods (A VP)for shock induction of atrial fibrillation (AF) in humans have not been clearly defined. Furthermore, the safety and efficacy of using low energy biatrial shock delivered transvenously for AF induction are unknown. We tested the safety and efficacy of using very low energy biatrial shocks, delivered between the right atrium and the coronary sinus for AF induction and used this technique to characterize the A VP in nine controls and nine patients with AF. Thirty-volt and 60-V 3/3-ms biphasic shocks were delivered, starting from 50 ms before the atrial effective refractory period with 20-ms increments until the end of the QRS interval to determine the AVP front, AVP end, and the AVP duration. Successful AF induction could be achieved in eight (89%) of the nine controls and in nine (100%) of the nine patients with AF without any complication. In patients with AF, the AVP front started significantly earlier within the QRS complex, and the AVP duration and the AVP duration/QRS percent ratios were also significantly greater as compared to controls. Furthermore, a higher induction shock energy in patients with AF was associated with an increase in AF inducibility and significantly increased the AVP duration and A VP duration/QRS percent ratio as compared to the controls. This study demonstrated the safe and efficacy of delivering a very low energy biatrial shock during the AVP within the R wave for AF induction. The characteristics of A VP in patients with AF were significantly different from normal subjects. [source]


Acute atrial arrhythmogenesis in murine hearts following enhanced extracellular Ca2+ entry depends on intracellular Ca2+ stores

ACTA PHYSIOLOGICA, Issue 2 2010
Y. Zhang
Abstract Aim:, To investigate the effect of increases in extracellular Ca2+ entry produced by the L-type Ca2+ channel agonist FPL-64176 (FPL) upon acute atrial arrhythmogenesis in intact Langendorff-perfused mouse hearts and its dependence upon diastolic Ca2+ release from sarcoplasmic reticular Ca2+ stores. Methods:, Confocal microscope studies of Fluo-3 fluorescence in isolated atrial myocytes were performed in parallel with electrophysiological examination of Langendorff-perfused mouse hearts. Results:, Atrial myocytes stimulated at 1 Hz and exposed to FPL (0.1 ,m) initially showed (<10 min) frequent, often multiple, diastolic peaks following the evoked Ca2+ transients whose amplitudes remained close to control values. With continued pacing (>10 min) this reverted to a regular pattern of evoked transients with increased amplitudes but in which diastolic peaks were absent. Higher FPL concentrations (1.0 ,m) produced sustained and irregular patterns of cytosolic Ca2+ activity, independent of pacing. Nifedipine (0.5 ,m), and caffeine (1.0 mm) and cyclopiazonic acid (CPA) (0.15 ,m) pre-treatments respectively produced immediate and gradual reductions in the F/F0 peaks. Such nifedipine and caffeine, or CPA pre-treatments, abolished, or reduced, the effects of 0.1 and 1.0 ,m FPL on cytosolic Ca2+ signals. FPL (1.0 ,m) increased the incidence of atrial tachycardia and fibrillation in intact Langendorff-perfused hearts without altering atrial effective refractory periods. These effects were inhibited by nifedipine and caffeine, and reduced by CPA. Conclusion:, Enhanced extracellular Ca2+ entry exerts acute atrial arrhythmogenic effects that is nevertheless dependent upon diastolic Ca2+ release. These findings complement reports that associate established, chronic, atrial arrhythmogenesis with decreased overall inward Ca2+ current. [source]


Alcohol Intake is Significantly Associated with Atrial Flutter in Patients under 60 Years of Age and a Shorter Right Atrial Effective Refractory Period

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 3 2008
GREGORY M. MARCUS M.D.
Background: Although evidence suggests that alcohol is associated with atrial fibrillation (AF), the association between alcohol and atrial flutter (AFL) has not been examined. The mechanism connecting alcohol and atrial arrhythmias is unknown. Methods: Alcohol intake was determined in 195 consecutive patients with AF and AFL. Control subjects included patients with other supraventricular arrhythmias (n = 132) and healthy subjects (n = 54). Because of important competing risk factors for atrial arrhythmias in the elderly, stratification by age was performed. In a subset, atrial effective refractory periods (AERPs) were obtained from the high right atrium and proximal and distal coronary sinus. Results: AF and AFL patients were significantly more likely to be daily alcohol drinkers (27% vs 14% of controls, P = 0.001). In multivariable analysis, AFL patients , 60 years of age were significantly more likely to be daily drinkers than to drink no alcohol compared to controls (odds ratio 17, 95% confidence interval 1.6,192.0, P = 0.019). Progressively more frequent alcohol intake was significantly associated with a progressively greater odds of AFL in patients , 60 years of age (P = 0.045). Neither AF subjects of any age nor AFL subjects > 60 years of age exhibited significant associations with alcohol after multivariable adjustment. Right AERPs shortened significantly with increasing amounts of alcohol intake (P = 0.025), whereas left AERPs were not associated with alcohol intake. Conclusions: Alcohol intake is positively associated with AFL in younger patients. The mechanism may be related to a shortening of the right AERP. [source]