Atrial Conduction (atrial + conduction)

Distribution by Scientific Domains

Terms modified by Atrial Conduction

  • atrial conduction velocity

  • Selected Abstracts


    Dissociation Between Coronary Sinus and Left Atrial Conduction in Patients with Atrial Fibrillation and Flutter

    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 6 2001
    GJIN NDREPEPA M.D.
    Dissociation Between CS and LA Conduction.Introduction: Coronary sinus (CS) recordings are routinely used during electrophysiologic studies for various supraventricular and ventricular arrhythmias with the understanding that they represent left atrial (LA) activity. However, the behavior of CS electrical activity during atrial arrhythmias has not drawn any special attention beyond standard considerations. Methods and Results: The study population consisted of 9 patients (3 women; mean age 59 ± 11 years) with atrial fibrillation (AF) and atrial flutter (AFL) who developed dissociation of conduction between the CS and posterior LA during spontaneous AF and AFL. In all patients, the LA and the CS were mapped using a 64-electrode basket catheter and a multipolar electrode catheter, respectively. The right atrium (RA) was mapped simultaneously using a 24-polar electrode catheter (7 patients) or a 64-electrode basket catheter (2 patients). Eight patients showed stable double potentials in CS recordings during AF (9 episodes) and AFL (3 episodes). During ongoing arrhythmias, the first row of potentials maintained a constant relationship with the RA activity, whereas the second row of potentials was discordant with the posterior wall of the LA in 7 patients and concordant in 2 patients. In 1 patient with counterclockwise AFL, CS activation was isolated from the posterior wall of the RA until it reached the distal portion of the CS, after which it entered the lateral region of the LA. In 1 patient, a macroreentrant LA tachycardia involving CS muscle was observed. Rapid atrial pacing from the proximal CS and extrastimuli produced longitudinal dissociation of CS activation in all patients. Conclusion: Conduction between the CS and posterior LA can be dissociated during spontaneous atrial arrhythmias and provocative proximal CS pacing. [source]


    Atrial fibrillation and bisphosphonate therapy

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2010
    Michael Pazianas
    Abstract Bisphosphonates are the most commonly used treatment for osteoporosis and have proven efficacy in the reduction of vertebral and nonvertebral fractures. Recently, concerns have been raised about a possible association between bisphosphonate therapy and atrial fibrillation (AF) following the report of a significant increase in risk of serious AF in women treated with zoledronic acid in the HORIZON study. Subsequent studies have produced conflicting results but have not excluded the possibility of such an association. Currently there is no direct evidence that bisphosphonates exert either acute or chronic effects on cardiac electrophysiology. Nevertheless, altered intracellular electrolyte homeostasis and proinflammatory, profibrotic, and antiangiogenic effects provide potential mechanisms by which atrial conduction could be affected in patients treated with bisphosphonates. In studies in which an increase in risk of AF has been identified, there is no evidence that this translates into increased mortality or increased risk of stroke, and the risk-benefit balance of bisphosphonate therapy in patients with osteoporosis and other forms of metabolic bone disease remains strongly positive. © 2010 American Society for Bone and Mineral Research [source]


    Characterization of the Electroanatomical Substrate in Human Atrial Fibrillation: The Relationship between Changes in Atrial Volume, Refractoriness, Wavefront Propagation Velocities, and AF Burden

    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 3 2007
    PIPIN KOJODJOJO M.R.C.P.
    Introduction: Progressive remodeling occurs in experimental models of AF whereby slowing of conduction, shortening of refractoriness, and atrial dilatation are associated with an increased vulnerability to atrial fibrillation (AF). This study investigates the relative changes in atrial geometry and electrophysiology with increasing AF burden in humans. Methods and Results: Patients undergoing ablation of AF or left-sided accessory pathways were recruited. Atrial volumes were determined by echocardiography. Wavefront propagation velocities (WPV), specifically in the direction of activation, were calculated from pre-ablation activation (CartoÔ) maps of both atria. Dispersion, adaptation of, and effective refractoriness (ERP) were measured at 3 sites. A composite arrhythmogenic index (Atrial Volume/WPV × ERP) was derived to compare the degree of electroanatomical remodeling with AF burden. Fifty-nine patients (22 paroxysmal AF, 19 recurrent persistent AF, and 18 controls) were recruited. AF subjects had slower right atrial WPV (P = 0.01), but no difference in left atrial WPV compared with controls. ERP was reduced globally (P < 0.05), with increased dispersion (P < 0.05). WPV and ERP did not distinguish between patients with paroxysmal or persistent AF. Biatrial volumes were greater only in patients with persistent AF (P < 0.01). There was a stepwise increase in the AI with increasing AF burden (P < 0.0001). Conclusion: An arrhythmogenic substrate exists in human AF, characterized by globally decreased refractoriness with greater dispersion, slower right atrial conduction, and atrial dilatation. Persistence of AF is not accompanied by any further electrical remodeling, but only atrial dilatation. The degree of electroanatomical remodeling is associated with the clinical pattern of AF. [source]


    Effect of Different Pacing Protocols on the Induction of Atrial Fibrillation in a Transvenously Paced Sheep Model

    PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 6 2001
    RIK WILLEMS
    WILLEMS, R. et al.: Effect of Different Pacing Protocols on the Induction of Atrial Fibrillation in a Transvenously Paced Sheep Model. In different animal models rapid atrial stimulation led to a shortening and maladaptation to rate of the atrial effective refractory period (AERP). This atrial electrical remodeling resulted in an increased vulnerability to atrial fibrillation (AF). These experimental findings formed the rationale for a stringent pursuit of sinus rhythm in patients with AF, since this would prevent or reverse atrial remodeling. This study tested the hypothesis that a reduction of arrhythmia burden would lead to a decreased vulnerability for AF. Different rapid atrial pacing protocols in a sheep model were used. During 15 weeks, 13 animals were continuously rapid paced and 7 animals were intermittently burst-paced, resulting in rapid atrial activation during 100% versus 33 ± 4% of the time, respectively. In the continuously paced group, 77% of the animals developed sustained AF (i.e., >1 hour) versus only 29% in the burst-paced group (P < 0.05). However, there was no difference in mean AERP shortening over time, nor maximal AERP shortening per animal, between both protocols. Minimal AERP was 103 ± 5 ms in the continuously paced group and 107 ± 5 in the burst-paced group (P = NS). Significant changes could be identified in effect on P wave duration, AVN function, and atrial dilation. Conduction slowing was more pronounced in the continuously paced group with a maximal P wave duration of 136 ± 4 ms in this group versus 116 ± 5 in the burst-paced group (P < 0.05). In the continuously paced group, the right atrial area significantly increased from 2.5 ± 0.1 cm2 at baseline to 4.2 ± 0.2 cm2. In the burst-paced group there was no significant atrial dilatation (from 2.6 ± 0.1 to 2.8 ± 0.1 cm2). In conclusion, limiting atrial arrhythmia burden slowed the development of sustained AF in this sheep model. This was not mediated by a decreased influence on atrial refractoriness but seemed to be dependent on smaller changes in atrial conduction and dimensions. [source]


    P-Wave Dispersion: A Novel Predictor of Paroxysmal Atrial Fibrillation

    ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 2 2001
    Polychronis E. Dilaveris M.D.
    Background: The prolongation of intraatrial and interatrial conduction time and the inhomogeneous propagation of sinus impulses are well known electrophysiologic characteristics in patients with paroxysmal atrial fibrillation (AF). Previous studies have demonstrated that individuals with a clinical history of paroxysmal AF show a significantly increased P-wave duration in 12-lead surface electrocardiograms (ECG) and signal-averaged ECG recordings. Methods: The inhomogeneous and discontinuous atrial conduction in patients with paroxysmal AF has recently been studied with a new ECG index, P-wave dispersion. P-wave dispersion is defined as the difference between the longest and the shortest P-wave duration recorded from multiple different surface ECG leads. Up to now the most extensive clinical evaluation of P-wave dispersion has been performed in the assessment of the risk for AF in patients without apparent heart disease, in hypertensives, in patients with coronary artery disease and in patients undergoing coronary artery bypass surgery. P-wave dispersion has proven to be a sensitive and specific ECG predictor of AF in the various clinical settings. However, no electrophysiologic study has proven up to now the suspected relationship between the dispersion in the atrial conduction times and P-wave dispersion. The methodology used for the calculation of P-wave dispersion is not standardized and more efforts to improve the reliability and reproducibility of P-wave dispersion measurements are needed. Conclusions: P-wave dispersion constitutes a recent contribution to the field of noninvasive electrocardiology and seems to be quite promising in the field of AF prediction. A.N.E. 2001;6(2):159,165 [source]