Home About us Contact | |||
ATP Consumption (atp + consumption)
Selected AbstractsAMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectivesACTA PHYSIOLOGICA, Issue 1 2009B. Viollet Abstract As the liver is central in the maintenance of glucose homeostasis and energy storage, knowledge of the physiology as well as physiopathology of hepatic energy metabolism is a prerequisite to our understanding of whole-body metabolism. Hepatic fuel metabolism changes considerably depending on physiological circumstances (fed vs. fasted state). In consequence, hepatic carbohydrate, lipid and protein synthesis/utilization are tightly regulated according to needs. Fatty liver and hepatic insulin resistance (both frequently associated with the metabolic syndrome) or increased hepatic glucose production (as observed in type 2 diabetes) resulted from alterations in substrates oxidation/storage balance in the liver. Because AMP-activated protein kinase (AMPK) is considered as a cellular energy sensor, it is important to gain understanding of the mechanism by which hepatic AMPK coordinates hepatic energy metabolism. AMPK has been implicated as a key regulator of physiological energy dynamics by limiting anabolic pathways (to prevent further ATP consumption) and by facilitating catabolic pathways (to increase ATP generation). Activation of hepatic AMPK leads to increased fatty acid oxidation and simultaneously inhibition of hepatic lipogenesis, cholesterol synthesis and glucose production. In addition to a short-term effect on specific enzymes, AMPK also modulates the transcription of genes involved in lipogenesis and mitochondrial biogenesis. The identification of AMPK targets in hepatic metabolism should be useful in developing treatments to reverse metabolic abnormalities of type 2 diabetes and the metabolic syndrome. [source] Environmental conditions impinge on dragline silk protein compositionINSECT MOLECULAR BIOLOGY, Issue 5 2008K.-H. Guehrs Abstract The silk formed in the major ampullate (MA) gland of the orb weaving spider Nephila clavipes is composed of two silk fibroins, which are called major ampullate spidroins 1 (MaSp1) and 2 (MaSp2). Analysis of proteolytic peptides and reactivity to spidroin type specific antibodies indicated that MaSp2 constituted only a minor part in the spinning dope as well as in the spun filaments. Upon starvation, a change in the silk's characteristic features was observed that was concomitant of a decrease in the contribution of MaSp2. The silk became less elastic and stiffer, which will better tailor its usability for the safety line, albeit at the expense of its employment as the web frame threads. In addition, since MaSp2 production requires greater ATP consumption, such a shift in the protein ratio cuts down on the energy costs to produce the silk. From this change in protein composition the spider might therefore benefit twice, by synthesizing ,cheaper' silk that into the bargain has properties that potentially can better support foraging in times of food shortage. [source] Altered metabolic fluxes result from shifts in metabolite levels in sucrose phosphorylase-expressing potato tubersPLANT CELL & ENVIRONMENT, Issue 10 2002A. R. Fernie Abstract As reported in a previous paper (Plant, Cell and Environment 24, 357,365, 2001), introduction of sucrose phosphorylase into the cytosol of potato results in increased respiration, an inhibition of starch accumulation and decreased tuber yield. Herein a more detailed investigation into the effect of sucrose phosphorylase expression on tuber metabolism, in order to understand why storage and growth are impaired is described. (1) Although the activity of the introduced sucrose phosphorylase was low and accounted for less than 10% of that of sucrose synthase its expression led to a decrease in the activities of enzymes of starch synthesis relative to enzymes of glycolysis and relative to total amylolytic activity. (2) Incubation of tuber discs in [14C]glucose revealed that the transformants display a two-fold increase of the unidirectional rate of sucrose breakdown. However this was largely compensated by a large stimulation of sucrose re-synthesis and therefore the net rate of sucrose breakdown was not greatly affected. Despite this fact major shifts in tuber metabolism, including depletion of sucrose to very low levels, higher rates of glycolysis, and larger pools of amino acids were observed in these lines. (3) Expression of sucrose phosphorylase led to a decrease of the cellular ATP/ADP ratio and energy charge in intact growing tubers. It was estimated that at least 30% of the ATP formed during respiration is consumed as a result of the large acceleration of the cycle of sucrose breakdown and re-synthesis in the transformants. Although the absolute rate of starch synthesis in short-term labelling experiments with discs rose, starch synthesis fell relative to other fluxes including respiration, and the overall starch content of the tubers was lower than in wild-type tubers. (4) External supply of amino acids to replace sucrose as an osmoticum led to a feed-back inhibition of glycolysis, but did not restore allocation to starch. (5) However, an external supply of the non-metabolizable sucrose analogue palatinose , but not sucrose itself , stimulated flux to starch in the transformants. (6) The results indicate that the impaired performance of sucrose phosphorylase-expressing tubers is attributable to decreased levels of sucrose and increased energy consumption during sucrose futile cycling, and imply that sucrose degradation via sucrose synthase is important to maintain a relatively large sucrose pool and to minimize the ATP consumption required for normal metabolic function in the wild type. [source] Phosphate metabolite concentrations and ATP hydrolysis potential in normal and ischaemic heartsTHE JOURNAL OF PHYSIOLOGY, Issue 17 2008Fan Wu To understand how cardiac ATP and CrP remain stable with changes in work rate , a phenomenon that has eluded mechanistic explanation for decades , data from 31phosphate-magnetic resonance spectroscopy (31P-MRS) are analysed to estimate cytoplasmic and mitochondrial phosphate metabolite concentrations in the normal state, during high cardiac workstates, during acute ischaemia and reactive hyperaemic recovery. Analysis is based on simulating distributed heterogeneous oxygen transport in the myocardium integrated with a detailed model of cardiac energy metabolism. The model predicts that baseline myocardial free inorganic phosphate (Pi) concentration in the canine myocyte cytoplasm , a variable not accessible to direct non-invasive measurement , is approximately 0.29 mm and increases to 2.3 mm near maximal cardiac oxygen consumption. During acute ischaemia (from ligation of the left anterior descending artery) Pi increases to approximately 3.1 mm and ATP consumption in the ischaemic tissue is reduced quickly to less than half its baseline value before the creatine phosphate (CrP) pool is 18% depleted. It is determined from these experiments that the maximal rate of oxygen consumption of the heart is an emergent property and is limited not simply by the maximal rate of ATP synthesis, but by the maximal rate at which ATP can be synthesized at a potential at which it can be utilized. The critical free energy of ATP hydrolysis for cardiac contraction that is consistent with these findings is approximately ,63.5 kJ mol,1. Based on theoretical findings, we hypothesize that inorganic phosphate is both the primary feedback signal for stimulating oxidative phosphorylation in vivo and also the most significant product of ATP hydrolysis in limiting the capacity of the heart to hydrolyse ATP in vivo. Due to the lack of precise quantification of Piin vivo, these hypotheses and associated model predictions remain to be carefully tested experimentally. [source] |