ATP2C1 Gene (atp2c1 + gene)

Distribution by Scientific Domains


Selected Abstracts


A novel mutation in the ATP2C1 gene is associated with Hailey,Hailey disease in a Chinese family

INTERNATIONAL JOURNAL OF DERMATOLOGY, Issue 1 2009
Zhou Jiang Liu MD
Background, A three-generation Chinese family with Hailey,Hailey disease (HHD) was identified and characterized. The proband developed HHD with severe recurrent blisters and crusted erosions involving the body folds. Skin biopsy studies showed epidermal hyperkeratosis and defects in cell-to-cell adhesion. Three other members in the family were also affected with HHD and had the same clinical manifestations. The purpose of this study was to identify the pathogenic gene or mutation in the family. Methods, All exons and exon,intron boundaries of ATP2C1 were polymerase chain reaction (PCR) amplified and sequenced with DNA samples from the proband. Restriction fragment length polymorphism (RFLP) analysis for the intron 23,exon 24 boundary of ATP2C1 was performed in all family members and in 100 normal control subjects. Results, A novel 2-bp deletion (c.2251delGT) was detected in exon 24 of the ATP2C1 gene. The mutation was present in the three other affected family members and in two asymptomatic young carriers, but not in the other normal family members or the 100 normal controls. The mutation resulted in a frameshift change and led to the formation of a premature termination codon (PTC) four amino acid residues downstream from the sixth transmembrane domain. Conclusions, Our results indicate that the novel c.2251delGT (p.V751fs) mutation in the ATP2C1 gene is responsible for HHD in this Chinese family. This study expands the spectrum of ATP2C1 mutations associated with HHD. [source]


Heterogeneous mutations of the ATP2C1 gene causing Hailey,Hailey disease in Hong Kong Chinese

JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY & VENEREOLOGY, Issue 10 2010
TS Cheng
Abstract Background, Hailey,Hailey disease (HHD) is a rare autosomal dominant dermatosis. It causes suprabasilar acantholysis leading to vesicular and crusted erosions affecting the flexures. Mutation of ATP2C1 gene encoding the human secretory pathway Ca2+/Mn2+ -ATPase (hSPCA1) was identified to be the cause of this entity. Objective, The aim of this study was to study the mutational profile of the ATP2C1 gene in Hong Kong Chinese patients with HHD. Methods, Patients with the clinical diagnosis of HHD proven by skin biopsy were included in this study. Mutation analysis was performed in 17 Hong Kong Chinese patients with HHD. Results, Ten mutations in the ATP2C1 gene were found. Six of these were novel mutations. The novel mutations included a donor splice site mutation (IVS22+1G>A); a missense mutation (c.1049A>T); two deletion mutations (c.185_188delAGTT and c.923_925delAAG); an acceptor splice site mutation (IVS21-1G>C) and an insertion mutation (c.2454dupT). Conclusion, The six novel mutations provide additions to the HHD mutation database. No hot-spot mutation was found and high allelic heterogeneity was demonstrated in the Hong Kong Chinese patients. [source]