Home About us Contact | |||
Atomic-layer Deposition (atomic-layer + deposition)
Selected AbstractsBlock Copolymer Nanostructures: Nanoscopic Morphologies in Block Copolymer Nanorods as Templates for Atomic-Layer Deposition of Semiconductors (Adv. Mater.ADVANCED MATERIALS, Issue 27 200927/2009) The frontispiece shows a TEM image of block copolymer nanorods exhibiting nanoscopic domain structures visualized by selective staining. The insets represent the methodology for producing semiconductor nanostructures reported by Yong Wang, Martin Steinhart, and co-workers on p. 2763. The first panel shows block copolymer nanorods, the second, the nanorods after conversion of the nanoscopic domain structure into a mesopore structure, and the third, the complex 1D semiconductor nanostructures obtained by ALD using the mesopores as templates. [source] Nanoscopic Morphologies in Block Copolymer Nanorods as Templates for Atomic-Layer Deposition of SemiconductorsADVANCED MATERIALS, Issue 27 2009Yong Wang Block-copolymer nanorods containing mesopore structures derived from confinement-induced nanoscopic morphologies were used as templates for atomic-layer deposition. Diffusion of the ALD precursors through the polymeric scaffold and deposition of ZnO on the walls of the internal mesopores yielded 1D ZnO nanostructures with hierarchical architectures containing helices and stacked doughnuts as structure motifs. [source] Three-Dimensional Nanostructures for PhotonicsADVANCED FUNCTIONAL MATERIALS, Issue 7 2010Georg von Freymann Abstract Recent progress in direct laser writing of three-dimensional (3D) polymer nanostructures for photonics is reviewed. This technology has reached a level of maturity at which it can be considered as the 3D analogue of planar electron-beam lithography. Combined with atomic-layer deposition and/or chemical-vapor deposition of dielectrics,the 3D analogues of planar evaporation technologies, the 3D polymer templates can be converted or inverted into 3D high-refractive-index-contrast nanostructures. Examples discussed in this review include positive and inverse 3D silicon-based woodpile photonic crystals possessing complete photonic bandgaps, novel optical resonator designs within these structures, 3D chiral photonic crystals for polarization-state manipulation, and 3D icosahedral photonic quasicrystals. The latter represent a particularly complex 3D nanostructure. [source] Nanoscopic Morphologies in Block Copolymer Nanorods as Templates for Atomic-Layer Deposition of SemiconductorsADVANCED MATERIALS, Issue 27 2009Yong Wang Block-copolymer nanorods containing mesopore structures derived from confinement-induced nanoscopic morphologies were used as templates for atomic-layer deposition. Diffusion of the ALD precursors through the polymeric scaffold and deposition of ZnO on the walls of the internal mesopores yielded 1D ZnO nanostructures with hierarchical architectures containing helices and stacked doughnuts as structure motifs. [source] Al2O3/ZrO2 Nanolaminates as Ultrahigh Gas-Diffusion Barriers,A Strategy for Reliable Encapsulation of Organic ElectronicsADVANCED MATERIALS, Issue 18 2009Jens Meyer Highly efficient gas-diffusion barriers based on nanolaminates of alternating Al2O3 and ZrO2 layers grown at 80,°C by atomic-layer deposition are presented. Ultralow water-vapor permeation rates are reported, and a dramatic reduction of statistical defects on larger areas was found compared to single Al2O3 layers. This study provides a concept for the encapsulation of organic optoelectronic devices. [source] |