Atomic Charges (atomic + charge)

Distribution by Scientific Domains
Distribution within Chemistry

Kinds of Atomic Charges

  • net atomic charge
  • partial atomic charge


  • Selected Abstracts


    The Use of Atomic Charges and Orbital Energies as Hydrogen-bonding-donor Parameters for QSAR Studies: Comparison of MNDO, AM1 and PM3 Methods

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 6 2000
    TARAVAT GHAFOURIAN
    Hydrogen-bonding, important in drug-receptor interactions, also determines the solubility and partitioning of drugs between phases. It is, therefore, important to incorporate the effects of hydrogen-bonding in studies of quantitative structure-activity relationships (QSAR). In this study the atomic charge on the most positively charged hydrogen atom in a molecule and the energy of the lowest unoccupied molecular orbital (LUMO) have been used as a measure of hydrogen-bond-donor capacity. For several hydrogen-bonding acids the Mulliken atomic charges and the energy of the LUMO produced by use of three semi-empirical methods, AM1, PM3 and MNDO, and MNDO electrostatic-potential-derived atomic charges, have been compared in correlations with solvatochromic hydrogen-bonding acidity (,,2H). Atomic charges and LUMO energies, particularly those calculated by use of the AM1 and MNDO methods, were found to correlate well with ,,2H. They were also found to be good models of hydrogen-bonding in QSAR correlations. [source]


    Accurate charge density of the tripeptide Ala-Pro-Ala with the maximum entropy method (MEM): influence of data resolution

    ACTA CRYSTALLOGRAPHICA SECTION B, Issue 4 2007
    Andreas Hofmann
    The accurate electron density of Ala-Pro-Ala is determined by the maximum entropy method (MEM), employing the same reflection data measured at 100,K which was used for a multipole refinement by Kalinowski et al. [(2007), Acta Cryst. Accepted for publication]. Properties of the electron density are compared with the corresponding properties of the static electron density from the multipole model and to the dynamic MEM electron density of trialanine at 20,K. It is thus shown that the increased thermal smearing at 100,K leads to lower electron densities in the bond critical points and atomic charges closer to zero for Ala-Pro-Ala than has been obtained for trialanine at 20,K. The influence of the resolution of the data is investigated by a series of MEM calculations. Atomic charges and atomic volumes are found not to depend on the resolution, but the charge density in the BCPs decreases with decreasing resolution of the dataset. The origin of this dependence is found to lie mostly in the more accurate estimate of the atomic displacement parameters (ADPs) for the higher-resolution datasets. If these effects are taken into account, meaningful information on chemical bonding can be obtained with data at a resolution better than dmin = 0.63,Å. Alternatively, low-resolution X-ray diffraction data can be used in accurate electron-density studies by the MEM, if another source of accurate values of the ADPs is available, e.g. from refinements with multipole parameters from a database of transferable multipole parameters. [source]


    Theoretical ab initio study of NO and CO depollution reaction catalyzed by copper

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 6 2001
    O. Bouhlel
    Abstract The reaction between NO and CO leading to N2 and CO2 is the most studied depollution process of the former molecules. An ab initio study of a multistage mechanism of this reaction catalyzed by copper was performed at SCF level. Many intermediates intervene in the proposed mechanism, such as CuCO, CuNO, CuO, and NCO. Geometrical parameters, atomic charge, dipole moment, vibrational normal mode wave number, and dissociation energy of intervening molecules were calculated. Thermochemistry parameters (,H, ,G, ,S) were also obtained. Transition state has also been determined and has allowed us to discuss the reaction mechanism. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001 [source]


    Prediction of octanol,water partition coefficients of organic compounds by multiple linear regression, partial least squares, and artificial neural network

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 15 2009
    Hassan Golmohammadi
    Abstract A quantitative structure,property relationship (QSPR) study was performed to develop models those relate the structure of 141 organic compounds to their octanol,water partition coefficients (log Po/w). A genetic algorithm was applied as a variable selection tool. Modeling of log Po/w of these compounds as a function of theoretically derived descriptors was established by multiple linear regression (MLR), partial least squares (PLS), and artificial neural network (ANN). The best selected descriptors that appear in the models are: atomic charge weighted partial positively charged surface area (PPSA-3), fractional atomic charge weighted partial positive surface area (FPSA-3), minimum atomic partial charge (Qmin), molecular volume (MV), total dipole moment of molecule (,), maximum antibonding contribution of a molecule orbital in the molecule (MAC), and maximum free valency of a C atom in the molecule (MFV). The result obtained showed the ability of developed artificial neural network to prediction of partition coefficients of organic compounds. Also, the results revealed the superiority of ANN over the MLR and PLS models. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009 [source]


    The Use of Atomic Charges and Orbital Energies as Hydrogen-bonding-donor Parameters for QSAR Studies: Comparison of MNDO, AM1 and PM3 Methods

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 6 2000
    TARAVAT GHAFOURIAN
    Hydrogen-bonding, important in drug-receptor interactions, also determines the solubility and partitioning of drugs between phases. It is, therefore, important to incorporate the effects of hydrogen-bonding in studies of quantitative structure-activity relationships (QSAR). In this study the atomic charge on the most positively charged hydrogen atom in a molecule and the energy of the lowest unoccupied molecular orbital (LUMO) have been used as a measure of hydrogen-bond-donor capacity. For several hydrogen-bonding acids the Mulliken atomic charges and the energy of the LUMO produced by use of three semi-empirical methods, AM1, PM3 and MNDO, and MNDO electrostatic-potential-derived atomic charges, have been compared in correlations with solvatochromic hydrogen-bonding acidity (,,2H). Atomic charges and LUMO energies, particularly those calculated by use of the AM1 and MNDO methods, were found to correlate well with ,,2H. They were also found to be good models of hydrogen-bonding in QSAR correlations. [source]


    Predicting Anti-HIV-1 Activities of HEPT-analog Compounds by Using Support Vector Classification

    MOLECULAR INFORMATICS, Issue 9 2005
    Wencong Lu
    Abstract The support vector classification (SVC), as a novel approach, was employed to make a distinction within a class of non-nucleoside reverse transcriptase inhibitors. 1-[(2-hydroxyethoxy) methyl]-6-(phenyl thio)-thymine (HEPT) derivatives with high anti-HIV-1 activities and those with low anti-HIV-1 activities were compared on the basis of the following molecular descriptors: net atomic charge on atom 4, molecular volume, partition coefficient, molecular refractivity, molecular polarisability and molecular weight. By using the SVC, a mathematical model was constructed, which can predict the anti-HIV-1 activities of the HEPT-analogue compounds, with an accuracy of 100% as calculated on the basis of the leave-one-out cross-validation (LOOCV) test. The results indicate that the performance of the SVC model exceeds that of the stepwise discriminant analysis (SDA) model, for which a prediction accuracy of 94% was reported. [source]


    Theoretical and Experimental Study of the Regioselectivity of Michael Additions

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 2 2004
    David C. Chatfield
    Abstract Nucleophilic attack at an ,,,-unsaturated carbonyl moiety usually results in conjugate addition at the ,-carbon atom (1,4 or Michael addition) or, occasionally, in addition at the carbonyl carbon atom (1,2 addition). Recently, however, addition at the ,-carbon atom has been observed when strongly electron-withdrawing groups are positioned at the carbon atom , relative to the carbonyl group [e.g., methyl 3,3-bis(trifluoromethyl)propenoate (8) and ethyl 3-(2,4-dinitrophenyl)propenoate (24)]. We have performed theoretical calculations [HF/6,31+G(d) and B3LYP//HF/6,31+G(d)] for the addition of cyanide anion to model ,,,-unsaturated carbonyl compounds to determine trends in the regioselectivity with respect to properties of the substituents. The difference between the reaction barriers for ,- vs. ,-addition decreases as the strength of electron-withdrawing groups increases until, for sufficiently strong electron-withdrawing groups, ,-addition becomes favored. The calculations are in agreement with the experimental results. We show that the regioselectivity can be predicted from partial atomic charges and properties of the frontier orbitals of the reactants. We also report new experimental evidence of ,-addition to polysubstituted cinnamates and cinnamaldehydes. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source]


    Are the Hirshfeld and Mulliken population analysis schemes consistent with chemical intuition?

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 9 2009
    Soumen Saha
    Abstract In the present article, we report a comparative study between the Hirshfeld and Mulliken population analysis schemes (abbreviated as HPA and MPA, respectively). Trends of atomic charges derived from these two population analysis schemes are compared with those expected from other commonly used chemical concepts like electronegativity, inductive effects, and resonance effects. Although previous studies on intramolecular reactivity sequences demonstrated that HPA generates reliable and non-negative (and thus physically more realistic) condensed Fukui function (FF) values, the present study reveals problems with the HPA charge partitioning technique. Specifically, HPA fails to reproduce reliable intermolecular and intramolecular charge trends in several systems. Reasons for the success and failure of HPA are discussed and a method for improving the Hirshfeld charge partitioning is proposed. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009 [source]


    H-doped PbTiO3: Structure and electronic properties

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 6 2007
    Arvids Stashans
    Abstract The geometry and electronic properties of the interstitial H atom in the tetragonal PbTiO3 crystal have been studied using an advanced quantum chemical computer code developed for the modeling of crystals. The inserted H atom was found to bind to one of the O atoms and to form the hydroxyl, OH group, with the inter-atomic distance equal to 0.93 Å and 1.00 Å for the hydroxyls containing O atom in the dimerized and nondimerized TiOTi chains, respectively. Atomic displacements in the vicinity of OH complex are calculated and analyzed in relation to the H-produced changes upon the atomic charges in defective region. The role of H impurity on the ferroelectric polarization in the tetragonal PbTiO3 is discussed in terms of the results obtained in our research and those presented in the other studies on this subject. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 [source]


    Electronic structure and physicochemical properties of selected penicillins

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 3 2007
    Catalina Soriano-Correa
    Abstract Traditionally, penicillins have been used as antibacterial agents due to their characteristics and widespread applications with few collateral effects, which have motivated several theoretical and experimental studies. Despite the latter, their mechanism of biological action has not been completely elucidated. We present a theoretical study at the Hartree,Fock and density functional theory (DFT) levels of theory of a selected group of penicillins such as the penicillin-G, amoxicillin, ampicillin, dicloxacillin, and carbenicillin molecules, to systematically determine the electron structure of full ,-lactam antibiotics. Our results allow us to analyze the electronic properties of the pharmacophore group, the aminoacyl side-chain, and the influence of the substituents (R and X) attached to the aminoacyl side-chain at 6, (in contrast with previous studies focused at the 3, substituents), and to corroborate the results of previous studies performed at the semiempirical level, solely on the ,-lactam ring of penicillins. Besides, several density descriptors are determined with the purpose of analyzing their link to the antibacterial activity of these penicillin compounds. Our results for the atomic charges (fitted to the electrostatic potential), the bond orders, and several global reactivity descriptors, such as the dipole moments, ionization potential, hardness, and the electrophilicity index, led us to characterize: the active sites, the effect of the electron-attracting substituent properties and their physicochemical features, which altogether, might be important to understand the biological activity of these type of molecules. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 [source]


    Comparative study of electrostatic solvent response by RISM and PCM methods,

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 2 2007
    S. Chiodo
    Abstract The solvent response on the solute is calculated by the reference interaction site model (RISM) and by the polarizable continuum model (PCM) methods. The linearized RISM technique is developed to treat free energies of atomic and polyatomic ions in water. An empirical repulsive bridge is used for the RISM calculations. The solvent electrostatic potential is approximated by a linear dependence on the solute atomic charges. For a series of monovalent polyatomic cations and anions, the method provides free energies deviating by few percent from the experimental data. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 [source]


    Ab initio calculations and analysis of chemical bonding in SrTiO3 and SrZrO3 cubic crystals

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 10 2006
    R. A. Evarestov
    Abstract The possibility of the different first-principles methods to describe the chemical bonding in SrTiO3 and SrZrO3 cubic crystals is investigated. The local properties of the electronic structure (atomic charges, bond orders, atomic delocalization indexes, and polarization fractions) were calculated with different methods: traditional Mulliken population analysis in LCAO calculations, two projection techniques in plane-wave (PW) calculations, population analysis based on Wannier-type atomic orbitals, and chemical bonding analysis based on the localized Wannier functions for occupied (valence band) LCAO states. All the techniques considered except the traditional Mulliken analysis demonstrate that the ionicity of chemical bonding in SrZrO3 is larger than in SrTiO3, in agreement with the Zr and Ti electronegativities relation and the relative bandgaps observed. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006 [source]


    Quantum chemical studies on molecular structural conformations and hydrated forms of salicylamide and O-hydroxybenzoyl cyanide

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 3 2005
    K. Anandan
    Abstract Ab initio and density functional theory (DFT) methods have been employed to study the molecular structural conformations and hydrated forms of both salicylamide (SAM) and O-hydroxybenzoyl cyanide (OHBC). Molecular geometries and energetics have been obtained in the gaseous phase by employing the Møller,Plesset type 2 MP2/6-311G(2d,2p) and B3LYP/6-311G(2d,2p) levels of theory. The presence of an electron-releasing group (SAM) leads to an increase in the energy of the molecular system, while the presence of an electron-withdrawing group (OHBC) drastically decreases the energy. Chemical reactivity parameters (, and ,) have been calculated using the energy values of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) obtained at the Hartree,Fock (HF)/6-311G(2d,2p) level of theory for all the conformers and the principle of maximum hardness (MHP) has been tested. The condensed Fukui functions have been calculated using the atomic charges obtained through the natural bond orbital (NBO) analysis scheme for all the optimized structures at the B3LYP/6-311G(2d,2p) level of theory, and the most reactive sites of the molecules have been identified. Nuclear magnetic resonance (NMR) studies have been carried out at the B3LYP/6-311G(2d,2p) level of theory for all the conformers in the gaseous phase on the basis of the method of Cheeseman and coworkers. The calculated chemical shift values have been used to discuss the delocalization activity of the electron clouds. The dimeric structures of the most stable conformers of both SAM and OHBC in the gaseous phase have been optimized at the B3LYP/6-311G(2d,2p) level of theory, and the interaction energies have been calculated. The most stable conformers of both compounds bear an intramolecular hydrogen bond, which gives rise to the formation of a pseudo-aromatic ring. These conformers have been allowed to interact with the water molecule. Special emphasis has been given to analysis of the intermolecular hydrogen bonds of the hydrated conformers. Self-consistent reaction field (SCRF) theory has been employed to optimize all the conformers in the aqueous phase (, = 78.39) at the B3LYP/6-311G(2d,2p) level of theory, and the solvent effect has been studied. Vibrational frequency analysis has been performed for all the optimized structures at MP2/6-311G(2d,2p) level of theory, and the stationary points corresponding to local minima without imaginary frequencies have been obtained for all the molecular structures. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005 [source]


    H-bond donor strength;

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 9 2009
    Abraham parameter;
    A quantum chemical model is introduced to predict the H-bond donor strength of monofunctional organic compounds from their ground-state electronic properties. The model covers OH, NH, and CH as H-bond donor sites and was calibrated with experimental values for the Abraham H-bond donor strength parameter A using the ab initio and density functional theory levels HF/6-31G** and B3LYP/6-31G**. Starting with the Morokuma analysis of hydrogen bonding, the electrostatic (ES), polarizability (PL), and charge transfer (CT) components were quantified employing local molecular parameters. With hydrogen net atomic charges calculated from both natural population analysis and the ES potential scheme, the ES term turned out to provide only marginal contributions to the Abraham parameter A, except for weak hydrogen bonds associated with acidic CH sites. Accordingly, A is governed by PL and CT contributions. The PL component was characterized through a new measure of the local molecular hardness at hydrogen, ,(H), which in turn was quantified through empirically defined site-specific effective donor and acceptor energies, EEocc and EEvac. The latter parameter was also used to address the CT contribution to A. With an initial training set of 77 compounds, HF/6-31G** yielded a squared correlation coefficient, r2, of 0.91. Essentially identical statistics were achieved for a separate test set of 429 compounds and for the recalibrated model when using all 506 compounds. B3LYP/6-31G** yielded slightly inferior statistics. The discussion includes subset statistics for compounds containing OH, NH, and active CH sites and a nonlinear model extension with slightly improved statistics (r2 = 0.92). © 2008 Wiley Periodicals, Inc. J Comput Chem 2009 [source]


    Quick scheme for evaluation of atomic charges in arbitrary aluminophosphate sieves on the basis of electron densities calculated with DFT methods

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 10 2007
    A. V. Larin
    Abstract It is demonstrated that unique and simple analytical functions are justified for the atomic charge dependences q of the T (T = Al, P) and O atoms of aluminophosphates (AlPOs) using DFT calculations with several basis sets, starting from STO-3G to 3-21G and 6-21G**. Three internal (bonds, angles, ,) coordinates for the charge dependences of the T atoms and four coordinates for the O are sufficient to reach a precision of 1.8% for the fitted q(Al), 1.0% for q(P), and 2.5% for q(O) relatively to the values calculated at any basis set level. The proposed strategy consists in an iterative scheme starting from charge dependences based on the neighbor's positions only. Electrostatic potential values are computed to illustrate the differences between the calculated and fitted charges in the considered AlPO models. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007 [source]


    Valence and extra-valence orbitals in main group and transition metal bonding

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 1 2007
    C. R. Landis
    Abstract We address the issue first raised by Maseras and Morokuma with regard to the questionable treatment of empty p-orbitals in the algorithm for natural atomic/bond orbitals (NAOs, NBOs) and associated natural population analysis. We quantify this issue in terms of the numerical error (root-mean-square density deviation) resulting from the two alternative treatments of empty p-sets, leading to distinct NAOs, atomic charges, and idealized Lewis structural representations. Computational application of this criterion to a broad spectrum of main group and transition group species (employing both single- and multi-structure resonance models) reveals the interesting general pattern of (i) relatively insignificant differences for normal-valent species, where a single resonance structure is usually adequate, but (ii) clear superiority of the standard NAO algorithm for hypervalent species, where multi-resonance character is pronounced. These comparisons show how the divisive issue of "valence shell expansion" in transition metal bonding is deeply linked to competing conceptual models of hypervalency (viz., "p-orbital participation" in skeletal hybridization vs. 3c/4e resonance character). The results provide a quantitative measure of superiority both for the standard NAO evaluation of atomic charges as well as the general 3c/4e (A: B-C , A-B :C resonance) picture of main- and transition-group hypervalency. © 2006 Wiley Periodicals, Inc. J Comput Chem, 2007 [source]


    Coupled atomic charge selectivity for optimal ligand-charge distributions at protein binding sites

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 16 2006
    Sathesh Bhat
    Abstract Charge optimization as a tool for both analyzing and enhancing binding electrostatics has become an attractive approach over the past few years. An interesting feature of this method for molecular design is that it provides not only the optimal charge magnitudes, but also the selectivity of a particular atomic center for its optimal charge. The current approach to compute the charge selectivity at a given atomic center of a ligand in a particular binding process is based on the binding-energy cost incurred upon the perturbation of the optimal charge distribution by a unit charge at the given atomic center, while keeping the other atomic partial charges at their optimal values. A limitation of this method is that it does not take into account the possible concerted changes in the other atomic charges that may incur a lower energetic cost than perturbing a single charge. Here, we describe a novel approach for characterizing charge selectivity in a concerted manner, taking into account the coupling between the ligand charge centers in the binding process. We apply this novel charge selectivity measure to the celecoxib molecule, a nonsteroidal anti-inflammatory agent binding to cyclooxygenase 2 (COX2), which has been recently shown to also exhibit cross-reactivity toward carbonic anhydrase II (CAII), to which it binds with nanomolar affinity. The uncoupled and coupled charge selectivity profiles over the atomic centers of the celecoxib ligand, binding independently to COX2 and CAII, are analyzed comparatively and rationalized with respect to available experimental data. Very different charge selectivity profiles are obtained for the uncoupled versus coupled selectivity calculations. © 2006 Wiley Periodicals, Inc. J Comput Chem, 2006 [source]


    Electric field-derived point charges to mimic the electrostatics in molecular crystals

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 10 2006
    Andrew E. Whitten
    Abstract Because of the way the electrostatic potential is defined in a crystal, it is not possible to determine potential-derived charges for atoms in a crystal. To overcome this limitation, we present a novel method for determining atomic charges for a molecule in a crystal based on a fit to the electric field at points on a surface around the molecule. Examples of fits to the electric field at points on a Hirshfeld surface, using crystal Hartree,Fock electron densities computed with a DZP basis set are presented for several organic molecular crystals. The field-derived charges for common functional groups are transferable, and reflect chemical functionality as well as the subtle effects of intermolecular interactions. The charges also yield an excellent approximation to the electric field surrounding a molecule in a crystal for use in cluster calculations on molecules in solids. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1063,1070, 2006 [source]


    Charge distribution in the water molecule,A comparison of methods

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 1 2005
    F. Martin
    Abstract The charge distribution in the water molecule has been analyzed using a broad variety of basis sets, four different quantum mechanical methods (Hartree,Fock, Becke3LYP, MP2, and QCISD), and six population analysis methods (Mulliken, NPA, AIM, CHELPG, Merz,Kollman, and Resp). The influence of the molecular structure on the calculated atomic charges has been studied using small perturbations of the experimentally determined structure. © 2004 Wiley Periodicals, Inc. J Comput Chem 26: 97,105, 2005 [source]


    Accuracy of free energies of hydration using CM1 and CM3 atomic charges

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 11 2004
    Blagovi, Marina Udier
    Abstract Absolute free energies of hydration (,Ghyd) have been computed for 25 diverse organic molecules using partial atomic charges derived from AM1 and PM3 wave functions via the CM1 and CM3 procedures of Cramer, Truhlar, and coworkers. Comparisons are made with results using charges fit to the electrostatic potential surface (EPS) from ab initio 6-31G* wave functions and from the OPLS-AA force field. OPLS Lennard,Jones parameters for the organic molecules were used together with the TIP4P water model in Monte Carlo simulations with free energy perturbation theory. Absolute free energies of hydration were computed for OPLS united-atom and all-atom methane by annihilating the solutes in water and in the gas phase, and absolute ,Ghyd values for all other molecules were computed via transformation to one of these references. Optimal charge scaling factors were determined by minimizing the unsigned average error between experimental and calculated hydration free energies. The PM3-based charge models do not lead to lower average errors than obtained with the EPS charges for the subset of 13 molecules in the original study. However, improvement is obtained by scaling the CM1A partial charges by 1.14 and the CM3A charges by 1.15, which leads to average errors of 1.0 and 1.1 kcal/mol for the full set of 25 molecules. The scaled CM1A charges also yield the best results for the hydration of amides including the E/Z free-energy difference for N -methylacetamide in water. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1322,1332, 2004 [source]


    Reduced basis set for the gold atom in cluster complexes

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 7 2004
    Harold Basch
    Abstract To extend the metal cluster size used in interfacing between bulk metals and molecules in ab initio studies of molecular electronics and chemisorption, a reduced size atomic orbital basis set for the gold atom has been generated. Based on the SKBJ relativistic effective core potential set, the three component 5d Gaussian orbital basis set is completely contracted. Comparisons between the full and reduced basis set in Au atom clusters and cluster complexes for geometry, bond distances, dipole moments, atomic charges, spin, bond dissociation energies, lowest energy harmonic frequencies, electron affinities, ionization energies, and density of states distributions show the contracted set to be a viable replacement for the full basis set. This result is obtained using both the B3LYP and BPW91 exchange-correlation potentials in density functional theory. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 899,906, 2004 [source]


    Parameterization of charge model 3 for AM1, PM3, BLYP, and B3LYP

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 11 2003
    Jason D. Thompson
    Abstract We have recently developed a new Class IV charge model for calculating partial atomic charges in molecules. The new model, called Charge Model 3 (CM3), was parameterized for calculations on molecules containing H, Li, C, N, O, F, Si, S, P, Cl, and Br by Hartree,Fock theory and by hybrid density functional theory (DFT) based on the modified Perdew,Wang density functional with several basis sets. In the present article we extend CM3 to semiempirical molecular orbital theory, in particular Austin Model 1 (AM1) and Parameterized Model 3 (PM3), and to the popular BLYP and B3LYP DFT and hybrid DFT methods, respectively. For the BLYP extension, we consider the 6-31G(d) basis set, and for the B3LYP extension, we consider three basis sets: 6-31G(d), 6-31+G(d), and MIDI!6D. We begin with the previous CM3 strategy, which involves 34 parameters for 30 pairs of elements. We then refine the model to improve the charges in compounds that contain N and O. This modification, involving two new parameters, leads to improved dipole moments for amides, bifunctional H, C, N, O compounds, aldehydes, ketones, esters, and carboxylic acids; the improvement for compounds not containing N results from obtaining more physical parameters for carbonyl groups when the OCN conjugation of amides is addressed in the parameterization. In addition, for the PM3 method, we added an additional parameter to improve dipole moments of compounds that contain bonds between C and N. This additional parameter leads to improved accuracy in the dipole moments of aromatic nitrogen heterocycles with five-membered rings. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1291,1304, 2003 [source]


    Dynamic Charge Equilibration-Morse stretch force field: Application to energetics of pure silica zeolites

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 16 2002
    Jan Sefcik
    Abstract We present the Dynamic Charge Equilibration (DQEq) method for a self-consistent treatment of charge transfer in force field modeling, where atomic charges are designed to reproduce electrostatic potentials calculated quantum mechanically. Force fields coupled with DQEq allow charges to readjust as geometry changes in classical simulations, using appropriate algorithms for periodic boundary conditions. The full electrostatic energy functional is used to derive the corresponding forces and the second derivatives (hessian) for vibrational calculations. Using DQEq electrostatics, we develop a simple nonbond force field for simulation of silica molecular sieves, where nonelectrostatic interactions are described by two-body Morse stretch terms. Energy minimization calculations with the new force field yield accurate unit cell geometries for siliceous zeolites. Relative enthalpies with respect to quartz and third-law entropies calculated from harmonic vibrational analysis agree very well with available calorimetric data: calculated SiO2 enthalpies relative to ,-quartz are within 2 kJ/mol and entropies at 298 K are within 3 J/mol K of the respective experimental values. Contributions from the zero point energy and vibrational degrees of freedom were found to be only about 1 kJ/mol for the free energy of mutual transformations between microporous silica polymorphs. The approach presented here can be applied to interfaces and other oxides as well and it is suitable for development of force fields for accurate modeling of geometry and energetics of microporous and mesoporous materials, while providing a realistic description of electrostatic fields near surfaces and inside pores of adsorbents and catalysts. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1507,1514, 2002 [source]


    The Use of Atomic Charges and Orbital Energies as Hydrogen-bonding-donor Parameters for QSAR Studies: Comparison of MNDO, AM1 and PM3 Methods

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 6 2000
    TARAVAT GHAFOURIAN
    Hydrogen-bonding, important in drug-receptor interactions, also determines the solubility and partitioning of drugs between phases. It is, therefore, important to incorporate the effects of hydrogen-bonding in studies of quantitative structure-activity relationships (QSAR). In this study the atomic charge on the most positively charged hydrogen atom in a molecule and the energy of the lowest unoccupied molecular orbital (LUMO) have been used as a measure of hydrogen-bond-donor capacity. For several hydrogen-bonding acids the Mulliken atomic charges and the energy of the LUMO produced by use of three semi-empirical methods, AM1, PM3 and MNDO, and MNDO electrostatic-potential-derived atomic charges, have been compared in correlations with solvatochromic hydrogen-bonding acidity (,,2H). Atomic charges and LUMO energies, particularly those calculated by use of the AM1 and MNDO methods, were found to correlate well with ,,2H. They were also found to be good models of hydrogen-bonding in QSAR correlations. [source]


    Computational studies of the cone and 1,2,3 alternate calix[6]arene bis-crown-4 isomers: structures, NMR shifts, atomic charges, and steric compression

    JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 12 2009
    Meghan N. Lawson
    Abstract The cone and 1,2,3 alternate isomers of calix[6]arene bis-crown-4 were investigated computationally. Structural optimizations, energies, bond distances, and Mulliken charges were calculated by the application of the B3LYP/6-31g(d) method/basis, followed by NMR calculations via both B3LYP/6-31g(d) and HF/6-31g(d). Calculations were completed at three different levels of imposed symmetry, and two calculations investigated the chloroform solvent effects. Better NMR results were obtained from HF/6-31g(d) calculations that did not impose molecular symmetry constraints. Consideration of solvent effects improved ground state energies, but other improvements were minimal and not significant enough to justify the added computational expense of solvent calculations. Overall results are consistent with known experimental assignments and were valuable for assigning previously unknown NMR peaks. Net charges, electrostatic forces, and local dipoles , but not bond lengths , are strongly correlated to spectroscopic manifestations of steric compression. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    1H chemical shifts in NMR.

    MAGNETIC RESONANCE IN CHEMISTRY, Issue 1 2005
    Part 2, Prediction of the 1H chemical shifts of molecules containing the ester group: a modelling, ab initio investigation
    Abstract The 1H NMR spectra of 24 compounds containing the ester group are given and assigned. These data were used to investigate the effect of the ester group on the 1H chemical shifts in these molecules. These effects were analysed using the CHARGE model, which incorporates the electric field, magnetic anisotropy and steric effects of the functional group for long-range protons together with functions for the calculation of the two- and three-bond effects. The effect of the ester electric field was given by considering the partial atomic charges on the three atoms of the ester group. The anisotropy of the carbonyl group was reproduced with an asymmetric magnetic anisotropy acting at the midpoint of the carbonyl bond with values of ,,parl and ,,perp of 10.1 × 10,30 and ,17.1 × 10,30 cm3 molecule,1. An aromatic ring current (=0.3 times the benzene ring current) was found to be necessary for pyrone but none for maleic anhydride. This result was confirmed by GIAO calculations. The observed 1H chemical shifts in the above compounds were compared with those calculated by CHARGE and the ab initio GIAO method (B3LYP/6,31G**). For the 24 compounds investigated with 150 1H chemical shifts spanning a range of ca 10 ppm, the CHARGE model gave an excellent r.m.s. error (obs , calc) of <0.1 ppm. The GIAO calculations gave a very reasonable r.m.s. error of ca 0.2 ppm although larger deviations of ca 0.5 ppm were observed for protons near to the electronegative atoms. The accurate predictions of the 1H chemical shifts given by the CHARGE model were used in the conformational analysis of the vinyl esters methyl acrylate and methyl crotonate. An illustration of the use of the CHARGE model in the prediction of the 1H spectrum of a complex organic molecule (benzochromen-6-one) is also given. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    Estimation of Aqueous-Phase Reaction Rate Constants of Hydroxyl Radical with Phenols, Alkanes and Alcohols

    MOLECULAR INFORMATICS, Issue 11-12 2009
    Ya-nan Wang
    Abstract A quantitative structure activity relationship (QSAR) model was developed for the aqueous-phase hydroxyl radical reaction rate constants (kOH) employing quantum chemical descriptors and multiple linear regressions (MLR). The QSAR development followed the OECD guidelines, with special attention to validation, applicability domain (AD) and mechanistic interpretation. The established model yielded satisfactory performance: the correlation coefficient square (R2) was 0.905, the root mean squared error (RMSE) was 0.139, the leave-many-out cross-validated QLMO2 was 0.806, and the external validated QEXT2 was 0.922 log units. The AD of the model covering compounds of phenols, alkanes and alcohols, was analyzed by Williams plot. The main molecular structural factors governing kOH are the energy of the highest occupied molecular orbital (EHOMO), average net atomic charges on hydrogen atoms (), molecular surface area (MSA) and dipole moment (,). It was concluded that kOH increased with increasing EHOMO and MSA, while decreased with increasing and ,. [source]


    Artemisinin Derivatives with Antimalarial Activity against Plasmodium falciparum Designed with the Aid of Quantum Chemical and Partial Least Squares Methods

    MOLECULAR INFORMATICS, Issue 8 2003

    Abstract Artemisinin derivatives with antimalarial activity against Plasmodium falciparum resistant to mefloquine are designed with the aid of Quantum Chemical and Partial Least Squares Methods. The PLS model with three principal components explaining 89.55% of total variance, Q2=0.83 and R2=0.92 was obtained for 14/5 molecules in the training/external validation set. The most important descriptors for the design of the model were one level above the lowest unoccupied molecular orbital energy (LUMO+1), atomic charges in atoms C9 and C11 (Q9) and (Q11) respectively, the maximum number of hydrogen atoms that might make contact with heme (NH) and RDF030,m (a radial distribution function centered at 3.0,Å interatomic distance and weighted by atomic masses). From a set of ten proposed artemisinin derivatives, a new compound (26), was predicted with antimalarial activity higher than the compounds reported in literature. Molecular graphics and modeling supported the PLS results and revealed heme-ligand and protein-ligand stereoelectronic relationships as important for antimalarial activity. The most active 26 and 29 in the prediction set possess substituents at C9 able to extend to hemoglobin exterior, what determines the high activity of these compounds. [source]


    Theoretical Prediction of the Phenoxyl Radical Formation Capacity and Cyclooxygenase Inhibition Relationships by Phenolic Compounds

    MOLECULAR INFORMATICS, Issue 6 2002
    Juan Ruiz
    Abstract Due to the importance of the O-H bond dissociation in the antioxidant mechanism of anti-inflammatory phenols, we studied the biradical process Ph-OH,PhO.+H. for 25 phenolic compounds using ab initio calculations. Enthalpies of reaction (,Hr), changes in the electron density at the O-H bond critical point (,OH) and total atomic charges of ortho and para carbon atoms strongly correlate with the in vitro inhibition of cyclooxygenase activity by phenols. The most active compounds have large values of the electron density at the O-H bond (,OH), thus favouring the O-H bond dissociation. In contrast, inactive compounds have small values of the electron density at the O-H bond (,OH), thus reducing the hydrogen donation ability. These results are also supported by the representation of the molecular electrostatic potentials maps. The prediction of the cyclooxygenase inhibitory activity of the proposed QSAR equations is analysed using the multilineal (MLR) method. Finally, the differences in biological activity are examined by analysing the binding interactions of active compounds in the pocket site of human COX-2 enzyme structure derived from crystallographic X -ray data. [source]


    Charge density and electrostatic potential analyses in paracetamol

    ACTA CRYSTALLOGRAPHICA SECTION B, Issue 3 2009
    Nouzha Bouhmaida
    The electron density of monoclinic paracetamol was derived from high-resolution X-ray diffraction at 100,K. The Hansen,Coppens multipole model was used to refine the experimental electron density. The topologies of the electron density and the electrostatic potential were carefully analyzed. Numerical and analytical procedures were used to derive the charges integrated over the atomic basins. The highest charge magnitude (,1.2,e) was found for the N atom of the paracetamol molecule, which is in agreement with the observed nucleophilic attack occurring in the biological media. The electric field generated by the paracetamol molecule was used to calculate the atomic charges using the divergence theorem. This was simultaneously applied to estimate the total electrostatic force exerted on each atom of the molecule by using the Maxwell stress tensor. The interaction electrostatic energy of dimers of paracetamol in the crystal lattice was also estimated. [source]