Atmospheric Composition (atmospheric + composition)

Distribution by Scientific Domains


Selected Abstracts


Model,data synthesis in terrestrial carbon observation: methods, data requirements and data uncertainty specifications

GLOBAL CHANGE BIOLOGY, Issue 3 2005
M. R. Raupach
Systematic, operational, long-term observations of the terrestrial carbon cycle (including its interactions with water, energy and nutrient cycles and ecosystem dynamics) are important for the prediction and management of climate, water resources, food resources, biodiversity and desertification. To contribute to these goals, a terrestrial carbon observing system requires the synthesis of several kinds of observation into terrestrial biosphere models encompassing the coupled cycles of carbon, water, energy and nutrients. Relevant observations include atmospheric composition (concentrations of CO2 and other gases); remote sensing; flux and process measurements from intensive study sites; in situ vegetation and soil monitoring; weather, climate and hydrological data; and contemporary and historical data on land use, land use change and disturbance (grazing, harvest, clearing, fire). A review of model,data synthesis tools for terrestrial carbon observation identifies ,nonsequential' and ,sequential' approaches as major categories, differing according to whether data are treated all at once or sequentially. The structure underlying both approaches is reviewed, highlighting several basic commonalities in formalism and data requirements. An essential commonality is that for all model,data synthesis problems, both nonsequential and sequential, data uncertainties are as important as data values themselves and have a comparable role in determining the outcome. Given the importance of data uncertainties, there is an urgent need for soundly based uncertainty characterizations for the main kinds of data used in terrestrial carbon observation. The first requirement is a specification of the main properties of the error covariance matrix. As a step towards this goal, semi-quantitative estimates are made of the main properties of the error covariance matrix for four kinds of data essential for terrestrial carbon observation: remote sensing of land surface properties, atmospheric composition measurements, direct flux measurements, and measurements of carbon stores. [source]


Individual growth rates do not predict aphid population densities under altered atmospheric conditions

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 3 2010
Edward B. Mondor
1Altered atmospheric composition, associated with climate change, can modify herbivore population dynamics through CO2 and/or O3 -mediated changes in plant quality. 2Although pea aphid Acyrthosiphon pisum genotypes exhibit intraspecific variation in population growth in response to atmospheric composition, the proximate mechanisms underlying this variation are largely unknown. 3By rearing single (green, pink) and mixed (green + pink) pea aphid genotypes on red clover Trifolium pratense at the Aspen Free Air CO2 and O3 Enrichment (Aspen FACE) site, we assessed whether: (i) elevated CO2 and/or O3 concentrations alter aphid growth and development and (ii) individual aphid growth rates predict aphid population densities. 4We showed that growth and development of individual green and pink aphids were not influenced by CO2 and/or O3 concentrations when reared as individual or mixed genotypes. Individual growth rates, however, did not predict population densities. 5Reared as a single genotype, green pea aphid populations decreased in response to elevated CO2 concentrations, but not in response to elevated CO2 + O3 concentrations. Pink pea aphid populations reared as a single genotype were unaffected by augmented CO2 or O3. Populations of mixed genotypes, however, were reduced under elevated CO2 concentrations, irrespective of O3 concentrations. 6Herbivore population sizes may not readily be predicted from growth rates of individual organisms under atmospheric conditions associated with global climate change. [source]


The Ozone Component of Global Change: Potential Effects on Agricultural and Horticultural Plant Yield, Product Quality and Interactions with Invasive Species

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 4 2009
Fitzgerald Booker
The productivity, product quality and competitive ability of important agricultural and horticultural plants in many regions of the world may be adversely affected by current and anticipated concentrations of ground-level ozone (O3). Exposure to elevated O3 typically results in suppressed photosynthesis, accelerated senescence, decreased growth and lower yields. Various approaches used to evaluate O3 effects generally concur that current yield losses range from 5% to 15% among sensitive plants. There is, however, considerable genetic variability in plant responses to O3. To illustrate this, we show that ambient O3 concentrations in the eastern United States cause substantially different levels of damage to otherwise similar snap bean cultivars. Largely undesirable effects of O3 can also occur in seed and fruit chemistry as well as in forage nutritive value, with consequences for animal production. Ozone may alter herbicide efficacy and foster establishment of some invasive species. We conclude that current and projected levels of O3 in many regions worldwide are toxic to sensitive plants of agricultural and horticultural significance. Plant breeding that incorporates O3 sensitivity into selection strategies will be increasingly necessary to achieve sustainable production with changing atmospheric composition, while reductions in O3 precursor emissions will likely benefit world food production and reduce atmospheric concentrations of an important greenhouse gas. [source]


Effects of Land-Use and Land-Cover Change on Evapotranspiration and Water Yield in China During 1900-2000,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2008
Mingliang Liu
Abstract:, China has experienced a rapid land-use/cover change (LUCC) during the 20th Century, and this process is expected to continue in the future. How LUCC has affected water resources across China, however, remains uncertain due to the complexity of LUCC-water interactions. In this study, we used an integrated Dynamic Land Ecosystem Model (DLEM) in conjunction with spatial data of LUCC to estimate the LUCC effects on the magnitude, spatial and temporal variations of evapotranspiration (ET), runoff, and water yield across China. Through comparisons of DLEM results with other model simulations, field observations, and river discharge data, we found that DLEM model can adequately catch the spatial and seasonal patterns of hydrological processes. Our simulation results demonstrate that LUCC led to substantial changes in ET, runoff, and water yield in most of the China's river basins during the 20th Century. The temporal and spatial patterns varied significantly across China. The largest change occurred during the second half century when almost all of the river basins had a decreasing trend in ET and an increasing trend in water yield and runoff, in contrast to the inclinations of ET and declinations of water yield in major river basins, such as Pearl river basin, Yangtze river basin, and Yellow river basin during the first half century. The increased water yield and runoff indicated alleviated water deficiency in China in the late 20th Century, but the increased peak flow might make the runoff difficult to be held by reservoirs. The continuously increasing ET and decreasing water yield in Continental river basin, Southwest river basin, and Songhua and Liaohe river basin implied regional water deficiency. Our study in China indicates that deforestation averagely increased ET by 138 mm/year but decreased water yield by the same amount and that reforestation averagely decreased ET by 422 mm/year since most of deforested land was converted to paddy land or irrigated cropland. In China, cropland-related land transformation is the dominant anthropogenic force affecting water resources during the 20th Century. On national average, cropland expansion was estimated to increase ET by 182 mm/year while cropland abandonment decreased ET by 379 mm/year. Our simulation results indicate that urban sprawl generally decreased ET and increased water yield. Cropland managements (fertilization and irrigation) significantly increased ET by 98 mm/year. To better understand LUCC effects on China's water resources, it is needed to take into account the interactions of LUCC with other environmental changes such as climate and atmospheric composition. [source]


Photobleaching of Dissolved Organic Material from a Tidal Marsh-Estuarine System of the Chesapeake Bay,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007
Maria Tzortziou
ABSTRACT Wetlands and tidal marshes in the Rhode River estuary of the Chesapeake Bay act as important sources of dissolved organic carbon and strongly absorbing dissolved organic matter (DOM) for adjacent estuarine waters. The effects of solar exposure on the photochemical degradation of colored DOM (CDOM) were examined for material derived from different sources (estuarine and freshwater parts of the Rhode River, sub-watershed stream, marshes) in this estuarine ecosystem. Consistent with changes in fluorescence emission, absorption loss upon exposure to different portions of the solar spectrum (i.e. different long-pass cut-off filters) occurred across the entire spectrum but the wavelength of maximum photobleaching decreased as the cut-off wavelength of the filter decreased. Our results illustrate that solar exposure can cause either an increase or a decrease in the CDOM absorption spectral slope, SCDOM, depending on the spectral quality of irradiation and, thus, on the parameters (e.g. atmospheric composition, concentration of UV-absorbing water constituents) that affect the spectral characteristics of the light to which CDOM is exposed. We derived a simple spectral model for describing the effects of solar exposure on CDOM optical quality. The model accurately, and consistently, predicted the observed dependence of CDOM photobleaching on the spectral quality of solar exposure. [source]