Atmospheric CO2 Concentration (atmospheric + co2_concentration)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Atmospheric CO2 concentration does not directly affect leaf respiration in bean or poplar

PLANT CELL & ENVIRONMENT, Issue 11 2001
S. Jahnke
Abstract It is a matter of debate if there is a direct (short-term) effect of elevated atmospheric CO2 concentration (Ca) on plant respiration in the dark. When Ca doubles, some authors found no (or only minor) changes in dark respiration, whereas most studies suggest a respiratory inhibition of 15,20%. The present study shows that the measurement artefacts , particularly leaks between leaf chamber gaskets and leaf surface, CO2 memory and leakage effects of gas exchange systems as well as the water vapour (,water dilution') effect on DCO2 measurement caused by transpiration , may result in larger errors than generally discussed. A gas exchange system that was used in three different ways , as a closed system in which Ca increased continuously from 200 to 4200 mmol (CO2) mol -1 (air) due to respiration of the enclosed leaf; as an intermittently closed system that was repeatedly closed and opened during Ca periods of either 350 or 2000 mmol mol -1, and as an open system in which Ca varied between 350 and 2000 mmol mol -1, is described. In control experiments (with an empty leaf chamber), the respective system characteristics were evaluated carefully. When all relevant system parameters were taken into account, no effects of short-term changes in CO2 on dark CO2 efflux of bean and poplar leaves were found, even when Ca increased to 4200 mmol mol -1. It is concluded that the leaf respiration of bean and poplar is not directly inhibited by elevated atmospheric CO2. [source]


What caused the mid-Holocene forest decline on the eastern Tibet-Qinghai Plateau?

GLOBAL ECOLOGY, Issue 2 2010
Ulrike Herzschuh
ABSTRACT Aim, Atmospheric CO2 concentrations depend, in part, on the amount of biomass locked up in terrestrial vegetation. Information on the causes of a broad-scale vegetation transition and associated loss of biomass is thus of critical interest for understanding global palaeoclimatic changes. Pollen records from the north-eastern Tibet-Qinghai Plateau reveal a dramatic and extensive forest decline beginning c. 6000 cal. yr bp. The aim of this study is to elucidate the causes of this regional-scale change from high-biomass forest to low-biomass steppe on the Tibet-Qinghai Plateau during the second half of the Holocene. Location, Our study focuses on the north-eastern Tibet-Qinghai Plateau. Stratigraphical data used are from Qinghai Lake (3200 m a.s.l., 36°32,,37°15, N, 99°36,,100°47, E). Methods, We apply a modern pollen-precipitation transfer function from the eastern and north-eastern Tibet-Qinghai Plateau to fossil pollen spectra from Qinghai Lake to reconstruct annual precipitation changes during the Holocene. The reconstructions are compared to a stable oxygen-isotope record from the same sediment core and to results from two transient climate model simulations. Results, The pollen-based precipitation reconstruction covering the Holocene parallels moisture changes inferred from the stable oxygen-isotope record. Furthermore, these results are in close agreement with simulated model-based past annual precipitation changes. Main conclusions, In the light of these data and the model results, we conclude that it is not necessary to attribute the broad-scale forest decline to human activity. Climate change as a result of changes in the intensity of the East Asian Summer Monsoon in the mid-Holocene is the most parsimonious explanation for the widespread forest decline on the Tibet-Qinghai Plateau. Moreover, climate feedback from a reduced forest cover accentuates increasingly drier conditions in the area, indicating complex vegetation,climate interactions during this major ecological change. [source]


Recent Advances in CO2 Capture and Utilization

CHEMSUSCHEM CHEMISTRY AND SUSTAINABILITY, ENERGY & MATERIALS, Issue 11 2008
Kerry Yu Dr.
Abstract Energy and the environment are two of the most important issues this century. More than 80,% of our energy comes from the combustion of fossil fuels, which will still remain the dominant energy source for years to come. It is agreed that carbon dioxide produced from the combustion process to be the most important anthropogenic greenhouse gas leading to global warming. Atmospheric CO2 concentrations have indeed increased by almost 100,ppm since their pre-industrial level, reaching 384,ppm in 2007 with a total annual emission of over 35,Gt. Prompt global action to resolve the CO2 crisis is therefore needed. To pursue such an action, we are urged to save energy without the unnecessary production of carbon emissions and to use energy in more efficient ways, but alternative methods to mitigate the greenhouse gas have to be considered. This Minireview highlights some recent promising research activities and their prospects in the areas of carbon capture and storage and chemical fixation of CO2 in constructing a future low-carbon global economy with reference to energy source, thermodynamic considerations, net carbon emissions and availability of reagents. [source]


Increase of atmospheric CO2 promotes phytoplankton productivity

ECOLOGY LETTERS, Issue 6 2004
Peter Schippers
Abstract It is usually thought that unlike terrestrial plants, phytoplankton will not show a significant response to an increase of atmospheric CO2. Here we suggest that this view may be biased by a neglect of the effects of carbon (C) assimilation on the pH and the dissociation of the C species. We show that under eutrophic conditions, productivity may double as a result of doubling of the atmospheric CO2 concentration. Although in practice productivity increase will usually be less, we still predict a productivity increase of up to 40% in marine species with a low affinity for bicarbonate. In eutrophic freshwater systems doubling of atmospheric CO2 may result in an increase of the productivity of more than 50%. Freshwaters with low alkalinity appeared to be very sensitive to atmospheric CO2 elevation. Our results suggest that the aquatic C sink may increase more than expected, and that nuisance phytoplankton blooms may be aggravated at elevated atmospheric CO2 concentrations. [source]


Scaling up evolutionary responses to elevated CO2: lessons from Arabidopsis

ECOLOGY LETTERS, Issue 5 2004
Joy K. Ward
Abstract Results from norm of reaction studies and selection experiments indicate that elevated CO2 will act as a selective agent on natural plant populations, especially for C3 species that are most sensitive to changes in atmospheric CO2 concentration. Evolutionary responses to CO2 may alter plant physiology, development rate, growth, and reproduction in ways that cannot be predicted from single generation studies. Moreover, ecological and evolutionary changes in plant communities will have a range of consequences at higher spatial scales and may cause substantial deviations from ecosystem level predictions based on short-term responses to elevated CO2. Therefore, steps need to be taken to identify the plant traits that are most likely to evolve at elevated CO2, and to understand how these changes may affect net primary productivity within ecosystems. These processes may range in scale from molecular and physiological changes that occur among genotypes at the individual and population levels, to changes in community- and ecosystem-level productivity that result from the integrative effects of different plant species evolving simultaneously. In this review, we (1) synthesize recent studies investigating the role of atmospheric CO2 as a selective agent on plants, (2) discuss possible control points during plant development that may change in response to selection at elevated CO2 with an emphasis at the primary molecular level, and (3) provide a quantitative framework for scaling the evolutionary effects of CO2 on plants in order to determine changes in community and ecosystem productivity. Furthermore, this review points out that studies integrating the effects of plant evolution in response to elevated CO2 are lacking, and therefore more attention needs be devoted to this issue among the global change research community. [source]


Potential changes in skipjack tuna (Katsuwonus pelamis) habitat from a global warming scenario: modelling approach and preliminary results

FISHERIES OCEANOGRAPHY, Issue 4-5 2003
Harilaos Loukos
Abstract Recent studies suggest a reduction of primary production in the tropical oceans because of changes in oceanic circulation under global warming conditions caused by increasing atmospheric CO2 concentration. This might affect the productivity of medium and higher trophic levels with potential consequences on marine resources such as tropical tuna. Here we combine the projections of up-to-date climate and ocean biogeochemical models with recent concepts of representation of fish habitat based on prey abundance and ambient temperature to gain some insight into the impact of climate change on skipjack tuna (Katsuwonus pelamis), the species that dominates present-day tuna catch. For a world with doubled atmospheric CO2 concentration, our results suggest significant large-scale changes of skipjack habitat in the equatorial Pacific. East of the date line, conditions could be improved by an extension of the present favourable habitat zones of the western equatorial Pacific, a feature reminiscent of warming conditions associated with El Niño events. Despite its simplicity and the associated underlying hypothesis, this first simulation is used to stress future research directions and key issues for modelling developments associated to global change. [source]


Several components of global change alter nitrifying and denitrifying activities in an annual grassland

FUNCTIONAL ECOLOGY, Issue 4 2006
R. BARNARD
Summary 1The effects of global change on below-ground processes of the nitrogen (N) cycle have repercussions for plant communities, productivity and trace gas effluxes. However, the interacting effects of different components of global change on nitrification or denitrification have rarely been studied in situ. 2We measured responses of nitrifying enzyme activity (NEA) and denitrifying enzyme activity (DEA) to over 4 years of exposure to several components of global change and their interaction (increased atmospheric CO2 concentration, temperature, precipitation and N addition) at peak biomass period in an annual grassland ecosystem. In order to provide insight into the mechanisms controlling the response of NEA and DEA to global change, we examined the relationships between these activities and soil moisture, microbial biomass C and N, and soil extractable N. 3Across all treatment combinations, NEA was decreased by elevated CO2 and increased by N addition. While elevated CO2 had no effect on NEA when not combined with other treatments, it suppressed the positive effect of N addition on NEA in all the treatments that included N addition. We found a significant CO2,N interaction for DEA, with a positive effect of elevated CO2 on DEA only in the treatments that included N addition, suggesting that N limitation of denitrifiers may have occurred in our system. Soil water content, extractable N concentrations and their interaction explained 74% of the variation in DEA. 4Our results show that the potentially large and interacting effects of different components of global change should be considered in predicting below-ground N responses of Mediterranean grasslands to future climate changes. [source]


Carbon dioxide assimilation by a wetland sedge canopy exposed to ambient and elevated CO2: measurements and model analysis

FUNCTIONAL ECOLOGY, Issue 2 2003
D. P. Rasse
Summary 1The wetland sedge Scirpus olneyi Gray displays fast rates of CO2 assimilation and responds positively to increased atmospheric CO2 concentration. The present study was aimed at identifying the ecophysiological traits specific to S. olneyi that drive these CO2 -assimilation patterns under ambient and elevated CO2 conditions. 2The net ecosystem exchange (NEE) of CO2 between S. olneyi communities and the atmosphere was measured in open-top chambers. 3We developed a new mechanistic model for S. olneyi communities based on published ecophysiological data and additional measurements of photosynthetic parameters. 4Our NEE measurements confirmed that S. olneyi communities have a high rate of summertime CO2 assimilation, with noontime peaks reaching 40 µmol CO2 m,2 ground s,1 on productive summer days, and that elevated CO2 increased S. olneyi CO2 assimilation by c. 35,40%. 5Using S. olneyi -specific ecophysiological parameters, comparison with measured NEE showed that the model accurately simulated these high rates of CO2 uptake under ambient or elevated CO2. 6The model pointed to the Rubisco capacity of Scirpus leaves associated with their high total nitrogen content as the primary explanation for the high rates of CO2 assimilation, and indicated that the vertical-leaf canopy structure of S. olneyi had comparatively little influence on CO2 assimilation. [source]


Last-century changes of alpine grassland water-use efficiency: a reconstruction through carbon isotope analysis of a time-series of Capra ibex horns

GLOBAL CHANGE BIOLOGY, Issue 4 2010
INÊS C. R. BARBOSA
Abstract The ecophysiological response of an alpine grassland to recent climate change and increasing atmospheric CO2 concentration was investigated with a new strategy to go back in time: using a time-series of Capra ibex horns as archives of the alpine grasslands' carbon isotope discrimination (13,). From the collection of the Natural History Museum of Bern, horns of 24 males from the population of the Augstmatthorn,Brienzer Rothorn mountains, Switzerland, were sampled covering the period from 1938 to 2006. Samples were taken from the beginning of each year-ring of the horns, representing the beginning of the horn growth period, the spring. The horns' carbon 13C content (,13C) declined together with that of atmospheric CO2 over the 69-year period, but 13, increased slightly (+0.4,), though significantly (P<0.05), over the observation period. Estimated intercellular CO2 concentration increased (+56 ,mol mol,1) less than the atmospheric CO2 concentration (+81 ,mol mol,1), so that intrinsic water-use efficiency increased by 17.8% during the 69-year period. However, the atmospheric evaporative demand at the site increased by approximately 0.1 kPa between 1955 and 2006, thus counteracting the improvement of intrinsic water-use efficiency. As a result, instantaneous water-use efficiency did not change. The observed changes in intrinsic water-use efficiency were in the same range as those of trees (as reported by others), indicating that leaf-level control of water-use efficiency of grassland and forests followed the same principles. This is the first reconstruction of the water-use efficiency response of a natural grassland ecosystem to last century CO2 and climatic changes. The results indicate that the alpine grassland community has responded to climate change by improving the physiological control of carbon gain to water loss, following the increases in atmospheric CO2 and evaporative demand. But, effective leaf-level water-use efficiency has remained unchanged. [source]


Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections

GLOBAL CHANGE BIOLOGY, Issue 2 2010
HAIFENG QIAN
Abstract The ongoing and projected warming in the northern high latitudes (NHL; poleward of 60 °N) may lead to dramatic changes in the terrestrial carbon cycle. On the one hand, warming and increasing atmospheric CO2 concentration stimulate vegetation productivity, taking up CO2. On the other hand, warming accelerates the decomposition of soil organic matter (SOM), releasing carbon into the atmosphere. Here, the NHL terrestrial carbon storage is investigated based on 10 models from the Coupled Carbon Cycle Climate Model Intercomparison Project. Our analysis suggests that the NHL will be a carbon sink of 0.3 ± 0.3 Pg C yr,1 by 2100. The cumulative land organic carbon storage is modeled to increase by 38 ± 20 Pg C over 1901 levels, of which 17 ± 8 Pg C comes from vegetation (43%) and 21 ± 16 Pg C from the soil (8%). Both CO2 fertilization and warming enhance vegetation growth in the NHL. Although the intense warming there enhances SOM decomposition, soil organic carbon (SOC) storage continues to increase in the 21st century. This is because higher vegetation productivity leads to more turnover (litterfall) into the soil, a process that has received relatively little attention. However, the projected growth rate of SOC begins to level off after 2060 when SOM decomposition accelerates at high temperature and then catches up with the increasing input from vegetation turnover. Such competing mechanisms may lead to a switch of the NHL SOC pool from a sink to a source after 2100 under more intense warming, but large uncertainty exists due to our incomplete understanding of processes such as the strength of the CO2 fertilization effect, permafrost, and the role of soil moisture. Unlike the CO2 fertilization effect that enhances vegetation productivity across the world, global warming increases the productivity at high latitudes but tends to reduce it in the tropics and mid-latitudes. These effects are further enhanced as a result of positive carbon cycle,climate feedbacks due to additional CO2 and warming. [source]


Plant diversity positively affects short-term soil carbon storage in experimental grasslands

GLOBAL CHANGE BIOLOGY, Issue 12 2008
SIBYLLE STEINBEISS
Abstract Increasing atmospheric CO2 concentration and related climate change have stimulated much interest in the potential of soils to sequester carbon. In ,The Jena Experiment', a managed grassland experiment on a former agricultural field, we investigated the link between plant diversity and soil carbon storage. The biodiversity gradient ranged from one to 60 species belonging to four functional groups. Stratified soil samples were taken to 30 cm depth from 86 plots in 2002, 2004 and 2006, and organic carbon contents were determined. Soil organic carbon stocks in 0,30 cm decreased from 7.3 kg C m,2 in 2002 to 6.9 kg C m,2 in 2004, but had recovered to 7.8 kg C m,2 by 2006. During the first 2 years, carbon storage was limited to the top 5 cm of soil while below 10 cm depth, carbon was lost probably as short-term effect of the land use change. After 4 years, carbon stocks significantly increased within the top 20 cm. More importantly, carbon storage significantly increased with sown species richness (log-transformed) in all depth segments and even carbon losses were significantly smaller with higher species richness. Although increasing species diversity increased root biomass production, statistical analyses revealed that species diversity per se was more important than biomass production for changes in soil carbon. Below 20 cm depth, the presence of one functional group, tall herbs, significantly reduced carbon losses in the beginning of the experiment. Our analysis indicates that plant species richness and certain plant functional traits accelerate the build-up of new carbon pools within 4 years. Additionally, higher plant diversity mitigated soil carbon losses in deeper horizons. This suggests that higher biodiversity might lead to higher soil carbon sequestration in the long-term and therefore the conservation of biodiversity might play a role in greenhouse gas mitigation. [source]


Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2

GLOBAL CHANGE BIOLOGY, Issue 12 2007
HEATHER R. McCARTHY
Abstract Increased canopy leaf area (L) may lead to higher forest productivity and alter processes such as species dynamics and ecosystem mass and energy fluxes. Few CO2 enrichment studies have been conducted in closed canopy forests and none have shown a sustained enhancement of L. We reconstructed 8 years (1996,2003) of L at Duke's Free Air CO2 Enrichment experiment to determine the effects of elevated atmospheric CO2 concentration ([CO2]) on L before and after canopy closure in a pine forest with a hardwood component, focusing on interactions with temporal variation in water availability and spatial variation in nitrogen (N) supply. The dynamics of L were reconstructed using data on leaf litterfall mass and specific leaf area for hardwoods, and needle litterfall mass and specific leaf area combined with needle elongation rates, and fascicle and shoot counts for pines. The dynamics of pine L production and senescence were unaffected by elevated [CO2], although L senescence for hardwoods was slowed. Elevated [CO2] enhanced pine L and the total canopy L (combined pine and hardwood species; P<0.050); on average, enhancement following canopy closure was ,16% and 14% respectively. However, variation in pine L and its response to elevated [CO2] was not random. Each year pine L under ambient and elevated [CO2] was spatially correlated to the variability in site nitrogen availability (e.g. r2=0.94 and 0.87 in 2001, when L was highest before declining due to droughts and storms), with the [CO2]-induced enhancement increasing with N (P=0.061). Incorporating data on N beyond the range of native fertility, achieved through N fertilization, indicated that pine L had reached the site maximum under elevated [CO2] where native N was highest. Thus closed canopy pine forests may be able to increase leaf area under elevated [CO2] in moderate fertility sites, but are unable to respond to [CO2] in both infertile sites (insufficient resources) and sites having high levels of fertility (maximum utilization of resources). The total canopy L, representing the combined L of pine and hardwood species, was constant across the N gradient under both ambient and elevated [CO2], generating a constant enhancement of canopy L. Thus, in mixed species stands, L of canopy hardwoods which developed on lower fertility sites (,3 g N inputs m,2 yr,1) may be sufficiently enhanced under elevated [CO2] to compensate for the lack of response in pine L, and generate an appreciable response of total canopy L (,14%). [source]


Sequestration and turnover of plant- and microbially derived sugars in a temperate grassland soil during 7 years exposed to elevated atmospheric pCO2

GLOBAL CHANGE BIOLOGY, Issue 2 2007
MICHAEL BOCK
Abstract Temperate grasslands contribute about 20% to the global terrestrial carbon (C) budget with sugars contributing 10,50% to this soil C pool. Whether the observed increase of the atmospheric CO2 concentration (pCO2) leads to additional C sequestration into these ecosystems or enhanced mineralization of soil organic matter (SOM) is still unclear. Therefore, the aim of the presented study was to investigate the impact of elevated atmospheric pCO2 on C sequestration and turnover of plant- (arabinose and xylose) and microbially derived (fucose, rhamnose, galactose, mannose) sugars in soil, representing a labile SOM pool. The study was carried out at the Swiss Free Air Carbon Dioxide Enrichment (FACE) experiment near Zurich. For 7 years, Lolium perenne swards were exposed to ambient and elevated pCO2 (36 and 60 Pa, respectively). The additional CO2 in the FACE plots was depleted in 13C compared with ambient plots, so that ,new' (<7 years) C inputs could be determined by means of compound-specific stable isotope analysis (13C : 12C). Samples were fractionated into clay, silt, fine sand and coarse sand, which yielded relatively stable and labile SOM pools with different turnover rates. Total sugar sequestration into bulk soil after 7 years of exposure to elevated pCO2 was about 28% compared with the control plots. In both ambient and elevated plots, total sugar concentrations in particle size fractions increased in the order sand[source]


Nitrogen-regulated effects of free-air CO2 enrichment on methane emissions from paddy rice fields

GLOBAL CHANGE BIOLOGY, Issue 9 2006
XUNHUA ZHENG
Abstract Using the free-air CO2 enrichment (FACE) techniques, we carried out a 3-year mono-factorial experiment in temperate paddy rice fields of Japan (1998,2000) and a 3-year multifactorial experiment in subtropical paddy rice fields in the Yangtze River delta in China (2001,2003), to investigate the methane (CH4) emissions in response to an elevated atmospheric CO2 concentration (200±40 mmol mol,1 higher than that in the ambient atmosphere). No significant effect of the elevated CO2 upon seasonal accumulative CH4 emissions was observed in the first rice season, but significant stimulatory effects (CH4 increase ranging from 38% to 188%, with a mean of 88%) were observed in the second and third rice seasons in the fields with or without organic matter addition. The stimulatory effects of the elevated CO2 upon seasonal accumulative CH4 emissions were negatively correlated with the addition rates of decomposable organic carbon (P<0.05), but positively with the rates of nitrogen fertilizers applied in either the current rice season (P<0.05) or the whole year (P<0.01). Six mechanisms were proposed to explain collectively the observations. Soil nitrogen availability was identified as an important regulator. The effect of soil nitrogen availability on the observed relation between elevated CO2 and CH4 emission can be explained by (a) modifying the C/N ratio of the plant residues formed in the previous growing season(s); (b) changing the inhibitory effect of high C/N ratio on plant residue decomposition in the current growing season; and (c) altering the stimulatory effects of CO2 enrichment upon plant growth, as well as nitrogen uptake in the current growing season. This study implies that the concurrent enrichment of reactive nitrogen in the global ecosystems may accelerate the increase of atmospheric methane by initiating a stimulatory effect of the ongoing dramatic atmospheric CO2 enrichment upon methane emissions from nitrogen-poor paddy rice ecosystems and further amplifying the existing stimulatory effect in nitrogen-rich paddy rice ecosystems. [source]


Elevated atmospheric CO2 effects on biomass production and soil carbon in conventional and conservation cropping systems

GLOBAL CHANGE BIOLOGY, Issue 4 2005
Stephen A. Prior
Abstract Increasing atmospheric CO2 concentration has led to concerns about potential effects on production agriculture as well as agriculture's role in sequestering C. In the fall of 1997, a study was initiated to compare the response of two crop management systems (conventional and conservation) to elevated CO2. The study used a split-plot design replicated three times with two management systems as main plots and two CO2 levels (ambient=375 ,L L,1 and elevated CO2=683 ,L L,1) as split-plots using open-top chambers on a Decatur silt loam (clayey, kaolinitic, thermic Rhodic Paleudults). The conventional system was a grain sorghum (Sorghum bicolor (L.) Moench.) and soybean (Glycine max (L.) Merr.) rotation with winter fallow and spring tillage practices. In the conservation system, sorghum and soybean were rotated and three cover crops were used (crimson clover (Trifolium incarnatum L.), sunn hemp (Crotalaria juncea L.), and wheat (Triticum aestivum L.)) under no-tillage practices. The effect of management on soil C and biomass responses over two cropping cycles (4 years) were evaluated. In the conservation system, cover crop residue (clover, sunn hemp, and wheat) was increased by elevated CO2, but CO2 effects on weed residue were variable in the conventional system. Elevated CO2 had a greater effect on increasing soybean residue as compared with sorghum, and grain yield increases were greater for soybean followed by wheat and sorghum. Differences in sorghum and soybean residue production within the different management systems were small and variable. Cumulative residue inputs were increased by elevated CO2 and conservation management. Greater inputs resulted in a substantial increase in soil C concentration at the 0,5 cm depth increment in the conservation system under CO2 -enriched conditions. Smaller shifts in soil C were noted at greater depths (5,10 and 15,30 cm) because of management or CO2 level. Results suggest that with conservation management in an elevated CO2 environment, greater residue amounts could increase soil C storage as well as increase ground cover. [source]


Sex-specific physiological and growth responses to elevated atmospheric CO2 in Silene latifolia Poiret

GLOBAL CHANGE BIOLOGY, Issue 4 2003
XIANZHONG WANG
Abstract Dioecy is found in nearly half of the angiosperm families, but little is known about how rising atmospheric CO2 concentration will affect male and female individuals of dioecious species. We examined gender-specific physiological and growth responses of Silene latifolia Poiret, a widespread dioecious species, to a doubled atmospheric CO2 concentration in environmentally controlled growth chambers. Elevated CO2 significantly increased photosynthesis in both male and female plants and by a similar magnitude. Males and females did not differ in net photosynthetic rate, but females had significantly greater biomass production than males, regardless of CO2 concentrations. Vegetative mass increased by 39% in males and in females, whereas reproductive mass increased by 82% in males and 97% in females at elevated CO2. As a result, proportionately more carbon was allocated to reproduction in male and female plants at elevated CO2. Higher CO2 increased individual seed mass significantly, but had no effect on the number or mass of seeds per female plant. Our results demonstrated that rising atmospheric CO2 will alter the allocation patterns in both male and female S. latifolia Poiret plants by shifting proportionally more photosynthate to reproduction. [source]


Modelling carbon balances of coastal arctic tundra under changing climate

GLOBAL CHANGE BIOLOGY, Issue 1 2003
Robert F. Grant
Abstract Rising air temperatures are believed to be hastening heterotrophic respiration (Rh) in arctic tundra ecosystems, which could lead to substantial losses of soil carbon (C). In order to improve confidence in predicting the likelihood of such loss, the comprehensive ecosystem model ecosys was first tested with carbon dioxide (CO2) fluxes measured over a tundra soil in a growth chamber under various temperatures and soil-water contents (,). The model was then tested with CO2 and energy fluxes measured over a coastal arctic tundra near Barrow, Alaska, under a range of weather conditions during 1998,1999. A rise in growth chamber temperature from 7 to 15 °C caused large, but commensurate, rises in respiration and CO2 fixation, and so no significant effect on net CO2 exchange was modelled or measured. An increase in growth chamber , from field capacity to saturation caused substantial reductions in respiration but not in CO2 fixation, and so an increase in net CO2 exchange was modelled and measured. Long daylengths over the coastal tundra at Barrow caused an almost continuous C sink to be modelled and measured during most of July (2,4 g C m,2 d,1), but shortening daylengths and declining air temperatures caused a C source to be modelled and measured by early September (,1 g C m,2 d,1). At an annual time scale, the coastal tundra was modelled to be a small C sink (4 g C m,2 y,1) during 1998 when average air temperatures were 4 °C above normal, and a larger C sink (16 g C m,2 y,1) during 1999 when air temperatures were close to long-term normals. During 100 years under rising atmospheric CO2 concentration (Ca), air temperature and precipitation driven by the IS92a emissions scenario, modelled Rh rose commensurately with net primary productivity (NPP) under both current and elevated rates of atmospheric nitrogen (N) deposition, so that changes in soil C remained small. However, methane (CH4) emissions were predicted to rise substantially in coastal tundra with IS92a-driven climate change (from ,20 to ,40 g C m,2 y,1), causing a substantial increase in the emission of CO2 equivalents. If the rate of temperature increase hypothesized in the IS92a emissions scenario had been raised by 50%, substantial losses of soil C (,1 kg C m,2) would have been modelled after 100 years, including additional emissions of CH4. [source]


Acclimation of photosynthesis and respiration to elevated atmospheric CO2 in two Scrub Oaks

GLOBAL CHANGE BIOLOGY, Issue 4 2002
Graham J. Hymus
Abstract For two species of oak, we determined whether increasing atmospheric CO2 concentration (Ca) would decrease leaf mitochondrial respiration (R) directly, or indirectly owing to their growth in elevated Ca, or both. In particular, we tested whether acclimatory decreases in leaf-Rubisco content in elevated Ca would decrease R associated with its maintenance. This hypothesis was tested in summer 2000 on sun and shade leaves of Quercus myrtifolia Willd. and Quercus geminata Small. We also measured R on five occasions between summer 1999 and 2000 on leaves of Q. myrtifolia. The oaks were grown in the field for 4 years, in either current ambient or elevated (current ambient + 350 µmol mol,1) Ca, in open-top chambers (OTCs). For Q. myrtifolia, an increase in Ca from 360 to 710 µmol mol,1 had no direct effect on R at any time during the year. In April 1999, R in young Q. myrtifolia leaves was significantly higher in elevated Ca,the only evidence for an indirect effect of growth in elevated Ca. Leaf R was significantly correlated with leaf nitrogen (N) concentration for the sun and shade leaves of both the species of oak. Acclimation of photosynthesis in elevated Ca significantly reduced maximum RuBP-saturated carboxylation capacity (Vc max) for both the sun and shade leaves of only Q. geminata. However, we estimated that only 11,12% of total leaf N was invested in Rubisco; consequently, acclimation in this plant resulted in a small effect on N and an insignificant effect on R. In this study measurements of respiration and photosynthesis were made on material removed from the field; this procedure had no effect on gas exchange properties. The findings of this study were applicable to R expressed either per unit leaf area or unit dry weight, and did not support the hypothesis that elevated Ca decreases R directly, or indirectly owing to acclimatory decreases in Rubisco content. [source]


Effects of atmospheric CO2 concentration and defoliation on the growth of Themeda triandra

GRASS & FORAGE SCIENCE, Issue 3 2004
S. J. E. Wand
Abstract The effects of elevated atmospheric carbon dioxide (CO2) concentration (700 ,mol mol,1) on defoliated (three clippings at 3-week intervals) and undefoliated plants were determined for the C4 grass Themeda triandra, Forsk. The elevated CO2 concentration significantly increased leaf regrowth following defoliation, and total leaf production was greatest in this treatment. Shoot biomass of undefoliated plants was also increased under the elevated CO2 concentration treatment. The primary effect of the elevated CO2 concentration in both defoliated and undefoliated plants was an increase in individual leaf length and mass of dry matter, linked to a higher leaf water content and increased photosynthetic rates at the canopy level. Photosynthetic down-regulation at the leaf level occurred, but this was compensated for by increased assimilation rates and greater canopy leaf area at the elevated CO2 concentration. Increases in leaf and sheath growth of defoliated plants in the elevated CO2 concentration treatment were lost following a final 3-week reversion to ambient CO2 concentration, but occurred in plants exposed to the elevated CO2 concentration for the final 3-week period only. In conclusion, elevated atmospheric CO2 concentration increases shoot growth via increased leaf extension, which is directly dependent on stimulation of concurrent photosynthesis. CO2 responsiveness is sustained following moderate defoliation but is reduced when plants experience reduced vigour as a result of maturation or high frequency of defoliation. [source]


Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream

HYDROLOGICAL PROCESSES, Issue 14 2008
Daniel H. Doctor
Abstract The stable isotopic composition of dissolved inorganic carbon (,13C-DIC) was investigated as a potential tracer of streamflow generation processes at the Sleepers River Research Watershed, Vermont, USA. Downstream sampling showed ,13C-DIC increased between 3,5, from the stream source to the outlet weir approximately 0·5 km downstream, concomitant with increasing pH and decreasing PCO2. An increase in ,13C-DIC of 2·4 ± 0·1, per log unit decrease of excess PCO2 (stream PCO2 normalized to atmospheric PCO2) was observed from downstream transect data collected during snowmelt. Isotopic fractionation of DIC due to CO2 outgassing rather than exchange with atmospheric CO2 may be the primary cause of increased ,13C-DIC values downstream when PCO2 of surface freshwater exceeds twice the atmospheric CO2 concentration. Although CO2 outgassing caused a general increase in stream ,13C-DIC values, points of localized groundwater seepage into the stream were identified by decreases in ,13C-DIC and increases in DIC concentration of the stream water superimposed upon the general downstream trend. In addition, comparison between snowmelt, early spring and summer seasons showed that DIC is flushed from shallow groundwater flowpaths during snowmelt and is replaced by a greater proportion of DIC derived from soil CO2 during the early spring growing season. Thus, in spite of effects from CO2 outgassing, ,13C of DIC can be a useful indicator of groundwater additions to headwater streams and a tracer of carbon dynamics in catchments. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Rain forest invasion of eucalypt-dominated woodland savanna, Iron Range, north-eastern Australia: II.

JOURNAL OF BIOGEOGRAPHY, Issue 8 2004
Rates of landscape change
Abstract Aim, To explore rates of rain forest expansion and associated ecological correlates in Eucalyptus -dominated woodland savanna vegetation in north-eastern Australia, over the period 1943,91. Location, Iron Range National Park and environs, north-east Queensland, Australia. This remote region supports probably the largest extent of lowland (< 300 m) rain forest extant in Australia. Rainfall (c. 1700 mm p.a.) occurs mostly between November and June, with some rain typically occurring even in the driest months July,October. Methods, Interpretation of change in lowland rain forest vegetation cover was undertaken for a 140 km2 area comprising complex vegetation, geology and physiography using available air photos (1943, 1970 and 1991). A GIS database was assembled comprising rain forest extent for the three time periods, geology, elevation, slope, aspect, proximity to streams and roads. Using standard GIS procedures, a sample of 6996 10 × 10 m cells (0.5% of study area) was selected randomly and attributed for vegetation structure (rain forest and non-rain forest), and landscape features. Associations of rain forest expansion with landscape features were examined with logistic regression using the subset of cells that had changed from other vegetation types to rain forest, and remained rain forest over the assessment period, and comparing them with cells that showed no change from their original, non-rain forest condition. Results, Rain forest in the air photo study area increased from 45 km2 in 1943 to 78.1 km2 by 1970, and to 82.6 km2 by 1991. Rainfall (and atmospheric CO2 concentration) was markedly lower in the first assessment period (1943,70). Modelled rates of rain forest invasion differed predominantly with respect to substrate type, occurring faster on substrates possessing better moisture retention properties, and across all elevation classes. Greatest expansion, at least in the first assessment period, occurred on the most inherently infertile substrates. Expansion was little constrained by slope, aspect and proximity to streams and roads. On schist substrates, probability of invasion remained high (> 60%) over distances up to 1500 m from mature rain forest margins; on less favourable substrates (diorite, granites), probability of expansion was negligible at sites more than 400 m from mature margins. Main conclusions, (i) Rain forest expansion was associated primarily with release from burning pressure from c. the 1920s, following major disruption of customary Aboriginal lifestyles including hunting and burning practices. (ii) Decadal-scale expansion of rain forest at Iron Range supports extensive observations from the palaeoecological literature concerning rapid rain forest invasion under conducive environmental conditions. (iii) The generality of these substrate-mediated observations requires further testing, especially given that landscape-scale rain forest invasion of sclerophyll-dominated communities is reported from other regions of north-eastern Australia. [source]


Assessment of ,13C and C/N ratios in bulk organic matter as palaeosalinity indicators in Holocene and Lateglacial isolation basin sediments, northwest Scotland,

JOURNAL OF QUATERNARY SCIENCE, Issue 6 2007
Elizabeth A. V. Mackie
Abstract Carbon isotopes (,13C) and C/N ratios from bulk organic matter have recently been used as alternative proxies for relative sea-level (RSL) reconstruction where there are problems associated with conventional biological indictors. A previous study on a single isolation basin (Upper Loch nan Eala) in northwest Scotland has shown a clear relationship between ,13C, C/N ratios and palaeosalinity from Younger Dryas and Holocene aged sediments. In this paper we present results of ,13C and C/N ratio analyses from other isolation basins in northwest Scotland over the Holocene and the Lateglacial period in order to validate this technique. The results from the Holocene sequences support the earlier findings that this technique can be used to identify RSL change from isolation basins over the Holocene in this region. The relationship between ,13C, C/N ratios and RSL change is not apparent in sediments of Lateglacial age. Other environmental variables such as atmospheric CO2 concentration, poor vegetation development and temperature influence ,13C values during this period. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Stomatal evidence for a decline in atmospheric CO2 concentration during the Younger Dryas stadial: a comparison with Antarctic ice core records

JOURNAL OF QUATERNARY SCIENCE, Issue 1 2002
J. C. Mcelwain
Abstract A recent high-resolution record of Late-glacial CO2 change from Dome Concordia in Antarctica reveals a trend of increasing CO2 across the Younger Dryas stadial (GS-1). These results are in good agreement with previous Antarctic ice-core records. However, they contrast markedly with a proxy CO2 record based on the stomatal approach to CO2 reconstruction, which records a ca. 70 ppm mean CO2 decline at the onset of GS-1. To address these apparent discrepancies we tested the validity of the stomatal-based CO2 reconstructions from Kråkenes by obtaining further proxy CO2 records based on a similar approach using fossil leaves from two independent lakes in Atlantic Canada. Our Late-glacial CO2 reconstructions reveal an abrupt ca. 77 ppm decrease in atmospheric CO2 at the onset of the Younger Dryas stadial, which lagged climatic cooling by ca. 130 yr. Furthermore, the trends recorded in the most accurate high-resolution ice-core record of CO2, from Dome Concordia, can be reproduced from our stomatal-based CO2 records, when time-averaged by the mean age distribution of air contained within Dome Concordia ice (200 to 550 yr). If correct, our results indicate an abrupt drawdown of atmospheric CO2 within two centuries at the onset of GS-1, suggesting that some re-evaluation of the behaviour of atmospheric CO2 sinks and sources during times of rapid climatic change, such as the Late-glacial, may be required. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Water relations and gas exchange in poplar and willow under water stress and elevated atmospheric CO2

PHYSIOLOGIA PLANTARUM, Issue 1 2002
Jon D. Johnson
Predictions of shifts in rainfall patterns as atmospheric [CO2] increases could impact the growth of fast growing trees such as Populus spp. and Salix spp. and the interaction between elevated CO2 and water stress in these species is unknown. The objectives of this study were to characterize the responses to elevated CO2 and water stress in these two species, and to determine if elevated CO2 mitigated drought stress effects. Gas exchange, water potential components, whole plant transpiration and growth response to soil drying and recovery were assessed in hybrid poplar (clone 53,246) and willow (Salix sagitta) rooted cuttings growing in either ambient (350 µmol mol,1) or elevated (700 µmol mol,1) atmospheric CO2 concentration ([CO2]). Predawn water potential decreased with increasing water stress while midday water potentials remained unchanged (isohydric response). Turgor potentials at both predawn and midday increased in elevated [CO2], indicative of osmotic adjustment. Gas exchange was reduced by water stress while elevated [CO2] increased photosynthetic rates, reduced leaf conductance and nearly doubled instantaneous transpiration efficiency in both species. Dark respiration decreased in elevated [CO2] and water stress reduced Rd in the trees growing in ambient [CO2]. Willow had 56% lower whole plant hydraulic conductivity than poplar, and showed a 14% increase in elevated [CO2] while poplar was unresponsive. The physiological responses exhibited by poplar and willow to elevated [CO2] and water stress, singly, suggest that these species respond like other tree species. The interaction of [CO2] and water stress suggests that elevated [CO2] did mitigate the effects of water stress in willow, but not in poplar. [source]


Diurnal and seasonal variations in stomatal conductance of rice at elevated atmospheric CO2 under fully open-air conditions

PLANT CELL & ENVIRONMENT, Issue 3 2010
HIROYUKI SHIMONO
ABSTRACT Understanding of leaf stomatal responses to the atmospheric CO2 concentration, [CO2], is essential for accurate prediction of plant water use under future climates. However, limited information is available for the diurnal and seasonal changes in stomatal conductance (gs) under elevated [CO2]. We examined the factors responsible for variations in gs under elevated [CO2] with three rice cultivars grown in an open-field environment under flooded conditions during two growing seasons (a total of 2140 individual measurements). Conductance of all cultivars was generally higher in the morning and around noon than in the afternoon, and elevated [CO2] decreased gs by up to 64% over the 2 years (significantly on 26 out of 38 measurement days), with a mean gs decrease of 23%. We plotted the gs variations against three parameters from the Ball-Berry model and two revised versions of the model, and all parameters explained the gs variations well at each [CO2] in the morning and around noon (R2 > 0.68), but could not explain these variations in the afternoon (R2 < 0.33). The present results provide an important basis for modelling future water use in rice production. [source]


Interactions between atmospheric CO2 concentration and phosphorus nutrition on the formation of proteoid roots in white lupin (Lupinus albus L.)

PLANT CELL & ENVIRONMENT, Issue 8 2002
C. D. Campbell
Abstract Atmospheric [CO2] affects photosynthesis and therefore should affect the supply of carbon to roots. To evaluate interactions between carbon supply and nutrient acquisition, the [CO2] effects on root growth, proteoid root formation and phosphorus (P) uptake capacity were studied in white lupin (Lupinus albus L.) grown hydroponically at 200, 410 and 750 µmol mol,1 CO2, under sufficient (0·25 mm P) and deficient (0·69 µm P) phosphorus. Plant size increased with increasing [CO2] only at high P. Both P deficiency and increasing [CO2] increased the production of proteoid clusters; the increase in response to increased [CO2] was proportionally greater from low to ambient [CO2] than from ambient to high. The activity of phosphoenol pyruvate carboxylase in the proteoid root, the exudation of organic acids from the roots, and the specific uptake of P increased with P deficiency, but were unaffected by [CO2]. Increasing [CO2] from Pleistocene levels to those predicted for the next century increased plant size and allocation to proteoid roots, but did not change the specific P uptake capacity per unit root mass. Hence, rising [CO2] should promote nutrient uptake by allowing lupins to mine greater volumes of soil. [source]


Atmospheric CO2 concentration does not directly affect leaf respiration in bean or poplar

PLANT CELL & ENVIRONMENT, Issue 11 2001
S. Jahnke
Abstract It is a matter of debate if there is a direct (short-term) effect of elevated atmospheric CO2 concentration (Ca) on plant respiration in the dark. When Ca doubles, some authors found no (or only minor) changes in dark respiration, whereas most studies suggest a respiratory inhibition of 15,20%. The present study shows that the measurement artefacts , particularly leaks between leaf chamber gaskets and leaf surface, CO2 memory and leakage effects of gas exchange systems as well as the water vapour (,water dilution') effect on DCO2 measurement caused by transpiration , may result in larger errors than generally discussed. A gas exchange system that was used in three different ways , as a closed system in which Ca increased continuously from 200 to 4200 mmol (CO2) mol -1 (air) due to respiration of the enclosed leaf; as an intermittently closed system that was repeatedly closed and opened during Ca periods of either 350 or 2000 mmol mol -1, and as an open system in which Ca varied between 350 and 2000 mmol mol -1, is described. In control experiments (with an empty leaf chamber), the respective system characteristics were evaluated carefully. When all relevant system parameters were taken into account, no effects of short-term changes in CO2 on dark CO2 efflux of bean and poplar leaves were found, even when Ca increased to 4200 mmol mol -1. It is concluded that the leaf respiration of bean and poplar is not directly inhibited by elevated atmospheric CO2. [source]


Responses of CAM species to increasing atmospheric CO2 concentrations

PLANT CELL & ENVIRONMENT, Issue 8 2000
P. M. Drennan
ABSTRACT Crassulacean acid metabolism (CAM) species show an average increase in biomass productivity of 35% in response to a doubled atmospheric CO2 concentration. Daily net CO2 uptake is similarly enhanced, reflecting in part an increase in chlorenchyma thickness and accompanied by an even greater increase in water-use efficiency. The responses of net CO2 uptake in CAM species to increasing atmospheric CO2 concentrations are similar to those for C3 species and much greater than those for C4 species. Increases in net daily CO2 uptake by CAM plants under elevated atmospheric CO2 concentrations reflect increases in both Rubisco-mediated daytime CO2 uptake and phosphoenolpyruvate carboxylase (PEPCase)-mediated night-time CO2 uptake, the latter resulting in increased nocturnal malate accumulation. Chlorophyll contents and the activities of Rubisco and PEPCase decrease under elevated atmospheric CO2, but the activated percentage for Rubisco increases and the KM(HCO3,) for PEPCase decreases, resulting in more efficient photosynthesis. Increases in root:shoot ratios and the formation of additional photosynthetic organs, together with increases in sucrose-Pi synthase and starch synthase activity in these organs under elevated atmospheric CO2 concentrations, decrease the potential feedback inhibition of photosynthesis. Longer-term studies for several CAM species show no downward acclimatization of photosynthesis in response to elevated atmospheric CO2 concentrations. With increasing temperature and drought duration, the percentage enhancement of daily net CO2 uptake caused by elevated atmospheric CO2 concentrations increases. Thus net CO2 uptake, productivity, and the potential area for cultivation of CAM species will be enhanced by the increasing atmospheric CO2 concentrations and the increasing temperatures associated with global climate change. [source]


Photosynthesis light curves: a method for screening water deficit resistance in the model legume Medicago truncatula

ANNALS OF APPLIED BIOLOGY, Issue 3 2009
C. Nunes
Abstract The photosynthetic performance of two transgenic Medicago truncatula lines engineered for water deficit (WD) resistance and a non-transformed line was assessed in a growth chamber experiment in well-watered, WD and stress recovery conditions. Direct gas exchange measurements showed that the transgenic plants had lower photosynthetic rates under well-hydrated conditions when compared to the non-transformed line. Photosynthesis light curves confirmed this difference but more importantly showed a progressive change in photosynthetic behaviour with intensity of dehydration. Dehydration led to sharp decreases of maximum photosynthesis (Amax), photosynthetic apparent quantum yield (,) and apparent light compensation point. The recovery rates showed that all plant lines had a similar capacity to regain control photosynthetic values. Furthermore, results suggested that light was more limiting for photosynthesis than atmospheric CO2 concentration. The results are discussed in terms of the use of photosynthesis light response curves as a non-destructive and expeditious approach to select M. truncatula transformants with improved WD resistance. [source]


Der globale Kohlenstoffkreislauf im Anthropozän.

CHEMIE IN UNSERER ZEIT (CHIUZ), Issue 2 2010
Betrachtung aus meereschemischer Perspektive
Abstract Durch die Verbrennung fossiler Brennstoffe werden durch die Menschheit jährlich über 8 Milliarden Tonnen Kohlenstoff (Gt C) in Form von CO2 in die Atmosphäre emittiert. Die kumulativen Emissionen seit Beginn der industriellen Revolution haben zu einem Anstieg der atmosphärischen CO2 -Konzentration geführt, die einen zusätzlichen anthropogenen Treibhauseffekt zur Folge hat. Von den drei auf der Zeitskala von Jahrhunderten austauschenden Kohlenstoffreservoiren Atmosphäre, terrestrische Biosphäre und Ozean ist der Ozean bei weitem das größte. Das CO2 -System des Meerwassers umfasst die chemischen Spezies HCO3,, CO32, und CO2(aq). Daraus resultiert die pH-puffernde Eigenschaft des Meerwassers sowie seine hohe Aufnahmekapazität für anthropogenes CO2. Mit Hilfe von vier chemischen Messgrößen kann das marine CO2 -System analytisch sehr präzise beschrieben werden. Diese Messgrößen dienen als sensitive "Sensoren" für physikalische, chemische und biologische Vorgänge im Meer. Im marinen Kohlenstoffkreislauf sind größere natürliche Prozesse aktiv, die Kohlenstoff mit der Atmosphäre austauschen und im Innern der Ozeans umverteilen. Diese Prozesse werden auch als "Pumpen" bezeichnet und sowohl durch physikalische als auch biologische Faktoren angetrieben. Während die "physikalische Pumpe" unmittelbar durch die Aufnahme von anthropogenem CO2 aus der Atmosphäre verstärkt wird, ist dieses für die beiden "biologischen Pumpen" bisher ungeklärt. Eine Vielzahl von potenziellen Konsequenzen des globalen Wandels (Temperaturanstieg, marine CO2 -Aufnahme, Ozeanversauerung) auf marine Ökosysteme sind identifiziert worden. Diese werden gegenwärtig intensiv hinsichtlich ihrer Klimasensitivität sowie ihres Rückkopplungspotenzials auf das Klima untersucht. Es ist jedoch kaum vorstellbar, dass die "biologischen Pumpen" sich unter dem Einfluss des globalen Wandels nicht verändern werden. By burning of fossil fuels humankind emits more than 8 billion tons of carbon (Gt C) in the form of CO2 to the atmosphere. Since the onset of the industrial revolution the cumulative emissions have led to an increase of the atmospheric CO2 concentration which corresponds to an additional radiative forcing in the atmosphere. Of the three reservoirs which exchange carbon on the time scale of centuries , atmosphere, terrestrial biosphere, and ocean , the ocean is by far the largest. The marine CO2 system comprises the chemical species HCO3,, CO32,, and CO2(aq). This gives rise to the pH-buffering nature of seawater as well as its high uptake capacity for anthropogenic CO2. Four measurement parameters of the marine CO2 system are available for an accurate analytical characterization. These parameters also provide a means of sensing the role of physical, chemical, and biological drivers for the marine carbon cycle. The marine carbon cycle features major natural processes that exchange carbon with the atmosphere and re-distribute it throughout the ocean. These are known as "pumps" and driven by physical and biological factors. While the "physical pump" is inevitably enhanced by the oceanic uptake of anthropogenic CO2, even the sign of the response is currently not clear for the "biological pumps". A host of potential consequences of global change (temperature rise, ocean carbonation, ocean acidification) have been identified. These are currently studied intensively with respect to their climate sensitivity as well as the climate feedback potential. [source]