Promising Therapeutic Agent (promising + therapeutic_agent)

Distribution by Scientific Domains


Selected Abstracts


Translational research to identify clinical applications of hepatocyte growth factor

HEPATOLOGY RESEARCH, Issue 8 2009
Akio Ido
Hepatocyte growth factor (HGF), originally purified from the plasma of patients with fulminant hepatic failure, has been shown to carry out various physiological functions. HGF not only stimulates liver regeneration, but also acts as an antiapoptotic factor in in vivo experimental models. Therefore, HGF is a promising therapeutic agent for the treatment of fatal liver diseases, including fulminant hepatic failure. After performing a number of preclinical tests, our group began an investigator-initiated registered phase I/II clinical trial of patients with fulminant hepatic failure to examine the safety and clinical efficacy of recombinant human HGF. In this article, we will discuss the basic research results as well as the translational research that underpins current attempts to use HGF in various clinical settings. [source]


Postinjury estrogen treatment of chronic spinal cord injury improves locomotor function in rats

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2010
Eric A. Sribnick
Abstract Spinal cord injury (SCI) causes loss of neurological function and, depending on serverity, may cause paralysis. The only recommended pharmacotherapy for the treatment of SCI is high-dose methylprednisolone, and its use is controversial. We have previously shown that estrogen treatment attenuated cell death, axonal and myelin damage, calpain and caspase activities, and inflammation in acute SCI. The aim of this study was to examine whether posttreatment of SCI with estrogen would improve locomotor function by protecting cells and axons and reducing inflammation during the chronic phase following injury. Moderately severe injury (40 g · cm force) was induced in male Sprague-Dawley rats following laminectomy at T10. Three groups of animals were used: sham (laminectomy only), vehicle (dimethyl sulfoxide; DMSO)-treated injury group, and estrogen-treated injury group. Animals were treated with 4 mg/kg estrogen at 15 min and 24 hr postnjury, followed by 2 mg/kg estrogen daily for the next 5 days. After treatment, animals were sacrificed at the end of 6 weeks following injury, and 1-cm segments of spinal cord (lesion, rostral to lesion, and caudal to lesion) were removed for biochemical analyses. Estrogen treatment reduced COX-2 activity, blocked nuclear factor-,B translocation, prevented glial reactivity, attenuated neuron death, inhibited activation and activity of calpain and caspase-3, decreased axonal damage, reduced myelin loss in the lesion and penumbra, and improved locomotor function compared with vehicle-treated animals. These findings suggest that estrogen may be useful as a promising therapeutic agent for prevention of damage and improvement of locomotor function in chronic SCI. © 2010 Wiley-Liss, Inc. [source]


Protective Effect of Total Flavones of Abelmoschus manihot L. Medic Against Poststroke Depression Injury in Mice and Its Action Mechanism

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 3 2009
Mei Liu
Abstract Total flavones of Abelmoschus manihot L. Medic (TFA) is the major active component isolated from the traditional Chinese herb Abelmoschus manihot L. Medic. We investigated the protective effect of TFA against poststroke depression (PSD) injury in mice and its action mechanism. A mouse model of PSD was induced by middle cerebral artery occlusion (MACO) 30 min/reperfusion, followed by isolation feeding and chronic unpredictable mild stress for 2 weeks. Treatment groups received TFA at three different doses (160, 80, and 40 mg/kg, p.o.) or fluoxetine (Flu, 2.5 mg/kg, p.o.) daily for 24 days. Change in behavior, brain tissue malondialdehyde (MDA) levels, and the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were measured. The expression of brain-derived neurotrophic factor (BDNF) was detected by immunohistochemistry, and mRNA expression of BDNF and cAMP response element-binding protein (CREB) analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Treatment with TFA (160, 80, and 40 mg/kg) significantly ameliorated mice escape-directed behavioral impairment induced by PSD, markedly reduced MDA levels, and increased the activity of SOD, GSH-Px close to normal levels. TFA administration also attenuated PSD-induced neuronal death/losses, upregulated expression of BDNF both at mRNA and protein levels, as well as CREB mRNA levels. TFA had a protective effect against PSD injury in mice. Cardioprotection involves the inhibition of lipid peroxidation and upregulation of BDNF-CREB levels in the hippocampus, which may also be important mechanism of its antidepressants. This potential protection makes TFA a promising therapeutic agent for the PSD. Anat Rec, 292:412,422, 2009. © 2009 Wiley-Liss, Inc. [source]


Pharmacological Profile and Therapeutic Potential of BM-573, a Combined Thromboxane Receptor Antagonist and Synthase Inhibitor

CARDIOVASCULAR THERAPEUTICS, Issue 1 2005
Alexandre Ghuysen
ABSTRACT BM-573 (N-terbutyl-N,-[2-(4,-methylphenylamino)-5-nitro-benzenesulfonyl]urea), a torsemide derivative, is a novel non-carboxylic dual TXA2 synthase inhibitor and receptor antagonist. The pharmacological profile of the drug is characterized by a higher affinity for the thromboxane receptor than that of SQ-29548, one of the most powerful antagonists described to date, by a complete prevention of human platelet aggregation induced by arachidonic acid at a lower dose than either torsemide or sulotroban, and by a significantly prolonged closure time measured by the platelet function analyser (PFA-100®). Moreover, at the concentrations of 1 and 10 ,M, BM-573 completely prevented production of TXB2 by human platelets activated by 0.6 mM of arachidonic acid. BM-573 prevents rat fundus contraction induced by U-46619 but not by prostacyclin or other prostaglandins. Despite possessing a chemical structure very similar to that of a diuretic torsemide, BM-573 has no diuretic activity. BM-573 does not prolong bleeding time and, unlike some of the other sulfonylureas, has no effect on blood glucose levels. In vivo, BM-573 appears to have antiplatelet and antithrombotic activities since it reduced thrombus weight and prolonged the time to abdominal aorta occlusion induced by ferric chloride. BM-573 also relaxed rat aorta and guinea pig trachea precontracted with U-46619. In pigs, BM-573 completely antagonized pulmonary hypertensive effects of U-46619 and reduced the early phase of pulmonary hypertension in models of endotoxic shock and pulmonary embolism. Finally, BM-573 protected pigs from myocardial infarction induced by coronary thrombosis. These results suggest that BM-573 should be viewed as a promising therapeutic agent in the treatment of pulmonary hypertension and syndromes associated with platelet activation. [source]