Promising Molecular Target (promising + molecular_target)

Distribution by Scientific Domains


Selected Abstracts


Critical roles of LGN/GPSM2 phosphorylation by PBK/TOPK in cell division of breast cancer cells

GENES, CHROMOSOMES AND CANCER, Issue 10 2010
Chikako Fukukawa
To investigate the molecular mechanism of mammary carcinogenesis and identify novel molecular targets for breast cancer therapy, we analyzed genome-wide gene expression profiles of 81 clinical breast cancer samples. Here, we report the critical role of LGN/GPSM2 (Leu-Gly-Asn repeat-enriched protein/G-protein signaling modulator 2) in the growth of breast cancer cells. Semiquantitative RT-PCR and Northern blot analyses confirmed upregulation of LGN/GPSM2 in a large proportion of breast cancers. Immunocytochemical staining identified LGN/GPSM2 at the spindle in cells at metaphase, and at midzone and midbody in cytokinetic cells. Western blot analysis indicated the highest expression and the phosphorylated form of LGN/GPSM2 protein in G2/M phase. Treatment with small-interfering RNAs (siRNAs) targeting LGN/GPSM2 caused incompletion of cell division and resulted in significant growth suppression of breast cancer cells. We found that the 450th threonine (Thr450) of LGN/GPSM2 was phosphorylated by the serine/threonine kinase PBK/TOPK during mitosis. Overexpression of LGN/GPSM2-T450A in which Thr450 was substituted with alanine induced growth suppression and aberrant chromosomal segregation. These findings imply an important role of LGN/GPSM2 in cell division of breast cancer cells and suggest that the PBK/TOPK-LGN/GPSM2 pathway might be a promising molecular target for treatment of breast cancer. © 2010 Wiley-Liss, Inc. [source]


The increased expression of Y box-binding protein 1 in melanoma stimulates proliferation and tumor invasion, antagonizes apoptosis and enhances chemoresistance

INTERNATIONAL JOURNAL OF CANCER, Issue 10 2007
Birgit Schittek
Abstract In previous studies we identified the transcription/translation factor Y-box-binding protein (YB-1) as a gene that is upregulated in primary melanoma and melanoma metastases when compared to benign melanocytic nevi. To analyze whether YB-1 expression correlates with melanoma progression in vitro and in vivo, we performed expression analysis on melanoma cell lines representing different stages of melanoma progression and on tissues of melanocytic nevi, primary melanoma and melanoma metastases. Our data indicate that compared to benign melanocytes YB-1 expression is increased in melanoma cells in vitro and in vivo and that YB-1 is translocated into the nucleus in invasive and metastatic melanoma cells. To reveal the functional role of YB-1 in melanoma progression we achieved a stable downregulation of YB-1 using shRNA in metastatic melanoma cells. Interestingly, YB-1 downregulation resulted in a pronounced reduced rate of proliferation and an increased rate of apoptotic cell death. In addition, migration and invasion of melanoma cells in monolayer and in a three-dimensional skin reconstruct in vitro was significantly reduced. These effects were accompanied by downregulation of genes involved in proliferation, survival and migration/invasion of melanoma cells such as MMP-2, bcl-2, Cyclin D1, p53 and p16INK4A. Furthermore, melanoma cells with a reduced YB-1 expression showed a decreased resistance to the chemotherapeutic agents cisplatin and etoposide. These data suggest that YB-1 is involved in malignant transformation of melanocytes and contributes to the stimulation of proliferation, tumor invasion, survival and chemoresistance. Thus, YB-1 may be a promising molecular target in melanoma therapy. © 2007 Wiley-Liss, Inc. [source]


Cancer cells survive with survivin

CANCER SCIENCE, Issue 9 2008
Hirofumi Yamamoto
Survivin has multiple functions including cytoprotection, inhibition of cell death, and cell-cycle regulation, especially at the mitotic process stage, all of which favor cancer survival. Many studies on clinical specimens have shown that survivin expression is invariably up-regulated in human cancers and is associated with resistance to chemotherapy or radiation therapy, and linked to poor prognosis, suggesting that cancer cells survive with survivin. It is also reported that survivin inhibition, alone or in combination with the other therapies, induces or enhances apoptosis and mitotic catastrophe in tumor cells. Moreover, certain antitumor agents can reduce survivin expression. These findings suggest that survivin may be a promising molecular target against human malignancies. (Cancer Sci 2008; 99: 1709,1714) [source]


Over-expression of cysteine proteinase inhibitor cystatin 6 promotes pancreatic cancer growth

CANCER SCIENCE, Issue 8 2008
Masayo Hosokawa
Pancreatic ductal adenocarcinoma (PDAC) shows the worst mortality among the common malignancies and development of novel therapies for PDAC through identification of good molecular targets is an urgent issue. Among dozens of over-expressing genes identified through our gene-expression profile analysis of PDAC cells, we here report CST6 (Cystatin 6 or E/M) as a candidate of molecular targets for PDAC treatment. Reverse transcriptase,polymerase chain reaction (RT-PCR) and immunohistochemical analysis confirmed over-expression of CST6 in PDAC cells, but no or limited expression of CST6 was observed in normal pancreas and other vital organs. Knock-down of endogenous CST6 expression by small interfering RNA attenuated PDAC cell growth, suggesting its essential role in maintaining viability of PDAC cells. Concordantly, constitutive expression of CST6 in CST6-null cells promoted their growth in vitro and in vivo. Furthermore, the addition of mature recombinant CST6 in culture medium also promoted cell proliferation in a dose-dependent manner, whereas recombinant CST6 lacking its proteinase-inhibitor domain and its non-glycosylated form did not. Over-expression of CST6 inhibited the intracellular activity of cathepsin B, which is one of the putative substrates of CST6 proteinase inhibitor and can intracellularly function as a pro-apoptotic factor. These findings imply that CST6 is likely to involve in the proliferation and survival of pancreatic cancer probably through its proteinase inhibitory activity, and it is a promising molecular target for development of new therapeutic strategies for PDAC. (Cancer Sci 2008; 99: 1626,1632) [source]