Projection Approach (projection + approach)

Distribution by Scientific Domains


Selected Abstracts


Numerical simulation of bubble and droplet deformation by a level set approach with surface tension in three dimensions

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 9 2010
Roberto Croce
Abstract In this paper we present a three-dimensional Navier,Stokes solver for incompressible two-phase flow problems with surface tension and apply the proposed scheme to the simulation of bubble and droplet deformation. One of the main concerns of this study is the impact of surface tension and its discretization on the overall convergence behavior and conservation properties. Our approach employs a standard finite difference/finite volume discretization on uniform Cartesian staggered grids and uses Chorin's projection approach. The free surface between the two fluid phases is tracked with a level set (LS) technique. Here, the interface conditions are implicitly incorporated into the momentum equations by the continuum surface force method. Surface tension is evaluated using a smoothed delta function and a third-order interpolation. The problem of mass conservation for the two phases is treated by a reinitialization of the LS function employing a regularized signum function and a global fixed point iteration. All convective terms are discretized by a WENO scheme of fifth order. Altogether, our approach exhibits a second-order convergence away from the free surface. The discretization of surface tension requires a smoothing scheme near the free surface, which leads to a first-order convergence in the smoothing region. We discuss the details of the proposed numerical scheme and present the results of several numerical experiments concerning mass conservation, convergence of curvature, and the application of our solver to the simulation of two rising bubble problems, one with small and one with large jumps in material parameters, and the simulation of a droplet deformation due to a shear flow in three space dimensions. Furthermore, we compare our three-dimensional results with those of quasi-two-dimensional and two-dimensional simulations. This comparison clearly shows the need for full three-dimensional simulations of droplet and bubble deformation to capture the correct physical behavior. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Theory of chemical bonds in metalloenzymes III: Full geometry optimization and vibration analysis of ferredoxin-type [2Fe,2S] cluster

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 1 2007
Mitsuo Shoji
Abstract The nature of chemical bonds in a ferredoxin-type [2Fe,2S] cluster has been investigated on the basis of natural orbitals and several bond indices developed in Parts I and II of this study. The broken-symmetry hybrid density functional theory (BS-HDFT) with spin projection approach has been applied to elucidate the natural orbitals and occupation numbers for a model compound [Fe2S2(SCH3)4] (1), which is used to calculate the indices. The molecular structure, vibration frequencies, electronic structures, and magnetic properties in both oxidized and reduced forms of 1 have been calculated and compared with the experimental values. The optimized molecular structures after approximate spin projection have been in good agreement with experimental data. The structure changes upon one-electron reduction have been slight (<0.1 Å) and only limited around one side of the Fe atom. Raman and infrared (IR) spectra have been calculated, and their vibration modes have been assigned using the bridging 34S isotope substitution. Their magnetic properties have been examined in terms of spin Hamiltonians that contain exchange interactions and double exchange interactions. The BS-HDFT methods have provided the magnetic parameters; i.e., effective exchange integral (J) values and valence delocalization (B) values, which agree with the experimental results. It is found that large charge transfer (CT) from the bridging sulfur to the iron atoms has led to the strong antiferromagnetic interactions between iron atoms. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 [source]


Numerical integration of differential-algebraic equations with mixed holonomic and control constraints

PROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2008
Mahmud Quasem
The present work aims at the incorporation of control (or servo) constraints into finite,dimensional mechanical systems subject to holonomic constraints. In particular, we focus on underactuated systems, defined as systems in which the number of degrees of freedom exceeds the number of inputs. The corresponding equations of motion can be written in the form of differential,algebraic equations (DAEs) with a mixed set of holonomic and control constraints. Apart from closed,loop multibody systems, the present formulation accommodates the so,called rotationless formulation of multibody dynamics. To this end, we apply a specific projection method to the DAEs in terms of redundant coordinates. A similar projection approach has been previously developed in the framework of generalized coordinates by Blajer & Ko,odziejczyk [1]. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Cox Regression in Nested Case,Control Studies with Auxiliary Covariates

BIOMETRICS, Issue 2 2010
Mengling Liu
Summary Nested case,control (NCC) design is a popular sampling method in large epidemiological studies for its cost effectiveness to investigate the temporal relationship of diseases with environmental exposures or biological precursors. Thomas' maximum partial likelihood estimator is commonly used to estimate the regression parameters in Cox's model for NCC data. In this article, we consider a situation in which failure/censoring information and some crude covariates are available for the entire cohort in addition to NCC data and propose an improved estimator that is asymptotically more efficient than Thomas' estimator. We adopt a projection approach that, heretofore, has only been employed in situations of random validation sampling and show that it can be well adapted to NCC designs where the sampling scheme is a dynamic process and is not independent for controls. Under certain conditions, consistency and asymptotic normality of the proposed estimator are established and a consistent variance estimator is also developed. Furthermore, a simplified approximate estimator is proposed when the disease is rare. Extensive simulations are conducted to evaluate the finite sample performance of our proposed estimators and to compare the efficiency with Thomas' estimator and other competing estimators. Moreover, sensitivity analyses are conducted to demonstrate the behavior of the proposed estimator when model assumptions are violated, and we find that the biases are reasonably small in realistic situations. We further demonstrate the proposed method with data from studies on Wilms' tumor. [source]